Fogging low concentrated organic acid in a fattening pig unit – Effect on animal health and microclimate

Heiko Stein 1,  
Jochen Schulz 2,  
Nicole Kemper 2,  
Ines Krauss 1,  
University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
Ann Agric Environ Med 2016;23(4):581–586
Introduction and objective:
In intensive pig production aerial contaminates are potential hazards for the health of animals and humans. In this study, the effect of fogging a low concentrated tartaric acid solution on pigs’ health, environmental and hygiene parameters were evaluated in an inhabited fattening unit.

Material and Methods:
Pigs were housed in separate units (control group n=109 and experimental group n=110). During the whole fattening period, twice a week at 48 hour intervals, a 0.1% tartaric acid solution was aerosolized by a cold-fogging system for 20 minutes in the experimental unit. Environmental parameters were spot-checked on days of fogging. Sedimentation dust and surfaces were analysed for bacterial and fungal load. Dust particle size distribution was assessed. Pigs were clinically examined weekly. Standard meat examination at an abattoir was extended by individual quantification of lung alterations.

The fogging procedure had no influence on ammonia concentrations. A significant reduction of mould, but not of bacteria, was found in sedimentation dust, and bacterial and mould scores of surface samples were improved. A significant reduction of particle size classes 1.6–2.0 µm, 4.0–5.0 µm, 7.5–10 µm, as well as 10–15 µm was observed. The high sound level of the fogging machine (82–102 dB) led to higher activity and pen-mate directed behaviour. More skin alterations, conjunctivitis and sneezing were recorded in the experimental group. Gross pathological lung alterations did not differ between both groups.

Although fogging of tartaric acid is limited to a concentration of 0.1% due to its irritating effect on the respiratory mucosa, reduction of microbial load can be achieved, but it would be enhanced by using more powerful fogging systems.

Isabel Hennig-Pauka   
University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
1. Steinmann T, Blaha T, Meemken D. A simplified evaluation system of surface-related lung lesions of pigs for official meat inspection under industrial slaughter conditions in Germany. BMC Vet Res. 2014; 10(98): 1–12.
2. Pagot E, Pommier P, Keïta A. Relationship between growth during the fattening period and lung lesions at slaughter in swine. Rev Med Vet Toulouse. 2007; 158(5): 253–259.
3. Wathes C M, Deminers T G M, Teer N, White R P, Taylor L L, Bland V, et al. Production responses of weaned pigs after chronic exposure to airborne dust and ammonia. Anim Sci. 2004; 78(1): 87–97.
4. Murphy T, Cargill C, Rutley D, Stott P. Pig-shed air polluted by α-haemolytic cocci and ammonia causes subclinical disease and production losses. Vet Rec. 2012; 171(5): 123–123.
5. Knetter S M, Tuggle C K, Wannemuehler M J, Ramer-Tait A E. Organic barn dust extract exposure impairs porcine macrophage function in vitro: implications for respiratory health. Vet Immunol Immunop. 2014; 157(1–2): 20–30.
6. Jassmann H, Johannsen U, Liebmann K, Mehlhorn G. Pathomorphological investigations on effects of stable dust to the respiratory tract of piglets without and with experimental pasteurella multocida infection. Proceedings of the 12th International Pig Veterinary Society Congress; 1992 Aug 17- 20; Den Haag,Netherlands. Boxtel: The Committee; 1992.
7. Radon K, Danuser B, Iversen M, Jörres R, Monso E, Opravil U, et al. Respiratory symptoms in European animal farmers. Eur Respir J. 2001; 17(4): 747–754.
8. Andersen C I, Von Essen S G, Smith L M, Spencer J, Jolie R, Donham K J. Respiratory symptoms and airway obstruction in swine veterinarians: a persistent problem. Am J Ind Med. 2004; 46(4): 386–392.
9. Monsó E, Riu E, Radon K, Magarolas R, Danuser B, Iversen M, et al. Chronic obstructive pulmonary disease in never-smoking animal farmers working inside confinement buildings. Am J Ind Med. 2004; 46(4): 357–362.
10. Seedorf J, Hartung J. Stäube und Mikroorganismen in der Tierhaltung. 1st ed. Münster (DE) KTBL-Schrift 393, 2002.
11. Hartung J, Saleh M. Composition of dust and effects on animals. Landbauforschung Voelkenrode. 2007; Special Issue 308: 111–116.
12. Kristiansen A, Saunders A M, Hansen A A, Nielsen P H, Nielsen J L. Community structure of bacteria and fungi in aerosols of a pig confinement building. FEMS Microbiol Ecol. 2012; 80(2): 390–401.
13. Gottschalk M, Segura M, Xu J. Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Anim Health Res Rev. 2007; 8(1): 29–45.
14. Bonifait L, Veillette M, Létourneau V, Grenier D, Duchaine C. Detection of Streptococcus suis in bioaerosols of swine confinement buildings. Appl Environ Microbiol. 2014; 80(11): 3296–3304.
15. Schulz J, Friese A, Klees S, Tenhagen B A, Fetsch A, Rösler U, et al. Longitudinal study of the contamination of air and of soil surfaces in the vicinity of pig barns by livestock-associated methicillin-resistant Staphylococcus aureus. Appl Environ Microbiol. 2012; 78(16): 5666–5671.
16. Hamscher G, Pawelzick H T, Sczesny S, Nau H, Hartung J. Antibiotics in dust originating from a pig-fattening farm: A new source of health hazard for farmers? Environ Health Perspect. 2003; 111(13): 1590–1594.
17. Philippe F X, Cabaraux J F, Nicks B. Ammonia emissions from pig houses: Influencing factors and mitigation techniques. Agric Ecosyst Environ. 2011; 141(3–4): 245–260.
18. Anonym. Verordnung zum Schutz landwirtschaftlicher Nutztiere und anderer zur Erzeugung tierischer Produkte gehaltener Tiere bei ihrer Haltung (Tierschutz-Nutztierhaltungsverordnung – TierSchNutztV).Federal Ministry of Justice and Consumer Protection http://www.gesetze-im-internet.de/tierschnutztv/BJNR275800001.html (access: 2015.10.02).
19. Hamilton T D C, Roe J M, Webster A J F. Synergistic role of gaseous ammonia in etiology of Pasteurella multocida-induced atrophic rhinitis in swine. J Clin Microbiol. 1996; 34(9): 2185–2190.
20. Jones J B, Burgess L R, Webster A J F, Wathes C M. Behavioural responses of pigs to atmospheric ammonia in a chronic choice test. Anim Sci. 1996; 63(3): 437–445.
21. Takai H, Nekomoto K, Dahl P J, Okamoto E, Morita S, Hoshiba S. Ammonia contents and desorption from dusts collected in livestock buildings. Agric Eng Int CIGR J Sci Res Dev. 2002; 4 (Manuscript BC 01 005): 1–11.
22. Hamon L, Lagadec S, Dumont E, Landrain B, Landrain P, Andrès Y. Quantification of the NH3 adsorption on dusts and its consequences on the design of systems for the removal of aerial pollutants in piggeries. Proceedings of the 9th International Livestock Environment Symposium; 2012 Jul 8–12; Valencia, Spain. New York: Curran Associates; 2013.
23. Takai H, Moller F, Iversen M, Jorsal SE, Bille-Hansen V. Dust control in pig houses by spraying rapeseed oil. Transact ASAE. 1995; 38(5): 1513–1518.
24. Dunowska M, Morley P S, Hyatt D R. The effect of Virkon® S fogging on survival of Salmonella enterica and Staphylococcus aureus on surfaces in a veterinary teaching hospital. Vet Microbiol. 2005; 105(3–4): 281–289.
25. Taneja N, Biswal M, Kumar A, Edwin A, Sunita T, Emmanuel R, et al. Hydrogen peroxide vapour for decontaminating air-conditioning ducts and rooms of an emergency complex in northern India: time to move on. J Hosp Infect. 2011; 78(3): 200–203.
26. Vardar C, Ilhan K, Karabulut O A. The application of various disinfectants by fogging for decreasing postharvest diseases of strawberry. Postharvest Biol Technol. 2012; 66: 30–34.
27. Costa A, Colosio C, Gusmara C, Sala V, Guarino M. Effects of disinfectant fogging procedure on dust, ammonia concentration, aerobic bacteria and fungal spores in a farrowing-weaning room. Ann Agric Environ Med. 2014; 21(3): 494–499.
28. Schulz J, Bao E, Clauss M, Hartung J. The potential of a new air cleaner to reduce airborne microorganisms in pig house air: preliminary results. Berl Munch Tierarztl Wochenschr. 2013; 126(3–4): 143–148.
29. Friese A, Schulz J, Hoehle L, Fetsch A, Tenhagen BA, Hartung J, et al. Occurrence of MRSA in air and housing environment of pig barns. Vet Microbiol. 2012; 158(1–2): 129–135.
30. Huneau-Salaün A, Michel V, Balaine L, Petetin I, Eono F, Ecobichon F, et al. Evaluation of common cleaning and disinfection programmes in battery cage and on-floor layer houses in France. Br Poult Sci 2010; 51(2): 204–212.
31. Anonym. Bijlage IV: Uitvoering van het hygiënogram. Federaal Agentschap voor de veiligheid van de voedselketen and Agence fédérale pour la sécurité de la chaîne alimentaire http://www.favv-afsca.be/dierengezondheid/salmonella/_documents/2011_11_14_BijlageIVbijomzendbriefGQNL20111007.pdf (access: 2016.05.03).
32. Nathues H, Spergser J, Rosengarten R, Kreienbrock L, Grosse Beilage E.Value of the clinical examination in diagnosing enzootic pneumonia in fattening pigs. Vet J. 2012; 193(2): 443–447.
33. Madec F, Kobisch M. Bilan lésionnel des poumons de porcs charcutiers à l’abattoir. J Rech Porc Fr. 1982; 14: 405–412.
34. Haeussermann A, Vranken E, Aerts J M, Hartung E, Jungbluth T, Berckmans D. Evaluation of control strategies for fogging systems in pig facilities. Transact ASAE. 2007; 50(1): 265–274.
35. Ni J Q, Hendriks J, Coenegrachts J, Vinckier C. Production of carbon dioxide in a fattening pig house under field conditions. I. Exhalation by pigs. Atmos Environ. 1999; 33(22): 3691–3696.
36. Kanitz E, Otten W, Tuchscherer M. Central and peripheral effects of repeated noise stress on hypothalamic–pituitary–adrenocortical axis in pigs. Livest Prod Sci. 2005; 94(3): 213–224.
37. Saleh M. Air quality in different housing systems for poultry with special reference to dust and airborne micro organisms. PhD- Thesis. Hannover (DE), Tierärztliche Hochschule Hannover, 2006.
38. Lai H T L, Aarnink A J A, Cambra-López M, Huynh T T T, Parmentier H K, Groot Koerkamp P W G. Size distribution of airborne particles in animal houses. Agric Eng Int: CIGR J. 2014; 16(3): 28–42.
39. Agarwal R, Gupta D.Severe asthma and fungi: current evidence. Med Mycol. 2011; 49(Suppl 1): 150–157.
40. Ivanov I E. Treatment of broiler litter with organic acids. Res Vet Sci. 2001; 70(2): 169–173.
41. Fujimura M, Kamio Y, Myou S, Hashimoto T. Effect of oral mexiletine on the cough response to capsaicin and tartaric acid. Thorax. 2000; 55(2): 126–128.
42. Moreaux B, Beerens D, Gustin P. Development of a cough induction test in pigs: effects of SR 48968 and enalapril. J Vet Pharmacol Ther. 1999; 22(6): 387–389.