BRIEF COMMUNICATION
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and Objective. Lyme borreliosis (LB) causes hundreds of thousands of new human infections worldwide annually. This is the first study connecting the LB risk to children with environmental factors. Materials and Method. The potential impacts were assessed of environmental factors (deer density in forests, coverage of potential broadleaved forest plant communities, urbanization index) on the number of LB cases in children. Analysis covered the medical records of 196 children diagnosed with LB (ICD- A69.2) from 1 January 2012 – 30 October 2021 in Wielkopolska Province (Poland). Results. All examined factors were positively correlated with LB cases. The highest correlation with the number of patients diagnosed with LB was presented by the degree of urbanization (percentage of the population living in cities in the total inhabitants of the study region). The number of cases was much higher in the second research period (2017–2021). Conclusions. The number of LB cases in children is increasing as the coverage of potential broadleaved forest plant communities increases. The number of cases among males is positively correlated with the coverage. Deer density is positively correlated with the number of LB cases among children – the higher the deer density, the greater the risk of LB infection. LB cases in children are positively correlated with the urbanization index – the more people that live in cities, the greater the risk to children of LB infection.
 
REFERENCES (40)
1.
ECDC. European Centre for Disease Prevention and Control: Lyme Borreliosis in Europe. 2016; https://www.ecdc.europa.eu/en/... (access: 2023.01.06).
 
2.
Rizzoli A, Hauffe HC, Carpi G, et al. Lyme Borreliosis in Europe. Eurosurveillance. 2011;16(27):pii = 19906 (ArticleId = 19906). http://www.eurosurveillance.or...? (access: 2023.01.06).
 
3.
Rizzoli A, Hauffe HC, Tagliapietra V, et al. Forest structure and roe deer abundance predict tick-borne encephalitis risk in Italy. PLoS One 2009;4(2):e4336. https://doi.org/10.1371/journa....
 
4.
Millins C, Gilbert L, Johnsosn P, et al. Heterogeneity in the abundance and distribution of Ixodes ricinus and Borrelia burgdorferi (sensu lato) in Scotland: implication for risk prediction. Parasite Vector. 2016;9:595. https://doi.org/10.1186/s13071....
 
5.
Li S, Vanwambeke SO, Licoppe AM, et al. Impacts of deer management practices on the spatial dynamics of the tick Ixodes ricinus: A scenario analysis. Ecol Modell. 2014;276(C):1–13. 10.1016/j.ecolmodel.2013.12.023.
 
6.
Mysterud A, Easterday WR, Qviller L, et al. Spatial and seasonal variation in the prevalence of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in questing Ixodes ricinus ticks in Norway. Parasite Vector. 2013;6:187. http://dx.doi.org/10.1186/1756....
 
7.
Kilpatrick HJ, La Bonte AM, Stafford KC. The relationship between deer density, tick abundance, and human cases of Lyme disease in a residential community. J Med Entomol. 2014;51(4):777–784. https://doi.org/10.1603/me1323....
 
8.
Gandy S, Kilbride E, Biek R, et al. Experimental evidence for opposing effects of high deer density on tick-borne pathogen prevalence and hazard. Parasite Vector. 2021;14(1):509. https://doi.org/10.1186/s13071....
 
9.
Ruiz-Fons F, Gilbert L. The role of deer as vehicles to move ticks, Ixodes ricinus, between contrasting habitats. Int J Parasitol. 2010;40(9):1013–1020. https://doi.org/10.1016/j.ijpa....
 
10.
Werden L, Barker IK, Bowman J, et al. Geography, deer, and host biodiversity shape the pattern of Lyme disease emergence in the Thousand Islands Archipelago of Ontario, Canada. PloS One. 2014;9(1):e85640. https://doi.org/10.1371/journa....
 
11.
Gilbert L, Maffey, GL, Ramsay SL, et al. The effect of deer management on the abundance of Ixodes ricinus in Scotland. Ecol Appl. 2012;22(2):658–667. https://doi.org/10.1890/11-045....
 
12.
Fischhoff IR, Keesing F, Ostfeld RS. Risk Factors for Bites and Diseases Associated With Black-Legged Ticks: A Meta-Analysis. Am J Epidemiol. 2019;188(9):1742–1750. https://doi.org/10.1093/aje/kw....
 
13.
Moon KA, Pollak J, Poulsen MN, et al. Peridomestic and community-wide landscape risk factors for Lyme disease across a range of community contexts in Pennsylvania. Environ Res. 2019;178:108649. https://doi.org/10.1016/j.envr....
 
14.
Wierzbicka A, Rączka G, Skorupski M, et al. Human behaviors elevating the risk of exposure to Ixodes ricinus larvae and nymphs in two types of lowland coniferous forests in west-central Poland. Ticks Tick Borne Dis. 2016;7(6):1180–1185. https://doi.org/10.1016/j.ttbd....
 
15.
Hansford KM, McGinley L, Wikinson S, et al. Ixodes ricinus and Borrelia burgdorferi sensu lato in the Royal Parks of London, UK. Exp Appl Acarol. 2021;84(3):593–606. https://doi.org/10.1007/s10493....
 
16.
Kowalec M, Szewczyk T, Welc-Falęciak R, et al. Ticks and the city – are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasite Vector. 2017;10(1):573. https://doi.org/10.1186/s13071....
 
17.
Răileanu C, Silaghi C, Fingerle V, et al. Borrelia burgdorferi Sensu Lato in Questing and Engorged Ticks from Different Habitat Types in Southern Germany. Microorganisms 2021;9(6):1266. https://doi.org/10.3390/microo....
 
18.
Kybicova K, Baštová K, Malý M. Detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in questing ticks Ixodes ricinus from the Czech Republic. Ticks Tick Borne Dis. 2017;8(4):483–487. https://doi.org/10.1016/j.ttbd... (2017).
 
19.
Liberska J, Michalik J, Pers-Kamczyc E, et al. Prevalence of Babesia canis DNA in Ixodes ricinus ticks collected in forest and urban ecosystems in west-central Poland. Ticks Tick Borne Dis. 2021;12(5):101786. https://doi.org/10.1016/j.ttbd....
 
20.
Klein JD, Eppes SC, Hunt P. Environmental and Life-style Risk Factors for Lyme Disease in Children. Clin Pediatr. 1996;35(7). https://doi.org/10.1177/000992....
 
21.
Pancewicz SA, Garlicki AM, Moniuszko-Malinowska A, et al. Diagnosis and treatment of tick-borne diseases. Recommendations of the Polish Society of Epidemiology and Infectious Diseases. Przegl Epidemiol. 2015;69:309–16.
 
22.
Myszkowska-Torz A, Mazur-Melewska K, Tomaszewski M, et al. Lyme borreliosis in children – trends in epidemiology. A single-centre study. Pediatria Pol – Polish J Paediatrics. 2023;98(1):23–29.
 
23.
GUS. Wielkopolskie Voivodship. Subregions, Powiats, Gminas (2015). Statistical Office in Poznań, Poland. http://poznan.stat.gov.pl (access: 2023.05.01).
 
24.
GUS. Wielkopolskie Voivodship. Subregions, Powiats, Gminas (2018). Statistical Office in Poznań, Poland. http://poznan.stat.gov.pl (access: 2023.05.01).
 
25.
GUS. Wielkopolskie Voivodship. Subregions, Powiats, Gminas (2019). Statistical Office in Poznań, Poland. http://poznan.stat.gov.pl (access: 2023.05.01).
 
26.
Bank Danych o Lasach. Lasy Państwowe. 2022. www.bdl.lasy.gov.pl (access: 2023.05.01).
 
27.
TIBCO Software Inc. Statistica (data analysis software system). 2022; v. 13. http://statistica.io.
 
28.
PZH. Raport końcowy zawierający trendy i prognozy umieralności i chorobowości z powodu chorób klimatozależnych, a także wnioski i rekomendacje dla jednostek systemu ochrony zdrowia w zakresie adaptacji do zmian klimatu. 2020. p. 52–59. https://www.pzh.gov.pl/wp-cont... (access: 2023.05.01).
 
29.
Opalińska P, Wierzbicka A, Asman M, et al. Fivefold higher abundance of ticks (Acari: Ixodida) on the European roe deer (Capreolus capreolus L.) forest than field ecotypes. Sci Rep. 2021;11:10649. https://doi.org/10.1038/s41598....
 
30.
Semenza JC, Rocklöv J, Ebi KL. Climate Change and Cascading Risks from Infectious Disease. Infect Dis Ther. 2022;11:1371–1390 https://doi.org/10.1007/s40121....
 
31.
Zembura P, Korcz A, Nałęcz H, et al. Results from Poland’s 2022 Report Card on Physical Activity for Children and Youth. Int J Environ Res Public Health. 2022;19(7):4276. doi:10.3390/ijerph19074276.
 
32.
Soga M, Yamanoi T, Tsuchiya K, et al. What are the drivers of and barriers to children’s direct experiences of nature? Landsc Urbane Plan. 2018;180:114–120. https://doi.org/10.1016/j.land....
 
33.
Zając Z, Kulisz J, Bartosik K, et al. Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland. Sci Rep. 2021;11:15472. https://doi.org/10.1038/s41598....
 
34.
Fabri ND, Sprong H, Hofmeester TR, et al. Wild ungulate species differ in their contribution to the transmission of Ixodes ricinus-borne pathogens. Parasit Vector. 2021;14. https://doi.org/10.1186/s13071....
 
35.
Buczek A, Ciura D, Bartosik K, et al. Threat of attacks of Ixodes ricinus ticks (Ixodida: Ixodidae) and Lyme borreliosis within urban heat islands in south-western Poland. Parasit Vector. 2014;7:562. https://doi.org/10.1186/s13071....
 
36.
Kubiak K, Dziekońska-Rynko J, Szymańska H, et al. Questing Ixodes ricinus ticks (Acari, Ixodidae) as a vector of Borrelia burgdorferi sensu lato and Borrelia miyamotoi in an urban area of north-eastern Poland. Exp Appl Acarol. 2019;78(1):113–126. doi:10.1007/s10493-019-00379-z.
 
37.
Gryczyńska A. Urban and forest-living blackbirds Turdus merula as hosts of Borreliella spp. infected ticks. Pol J Ecol. 2018;66:309–314. doi: 10.3161/15052249PJE2018.66.3.01031.
 
38.
Narodowy Instytut Zdrowia Publicznego. Choroby zakaźne i zatrucia w Polsce rok 2017. https://epibaza.pzh.gov.pl/cho... (access: 2023.05.01).
 
39.
Szenborn L. Borelioza – aktualne zasady leczenia i edukacji pacjenta. Świat Med Farm. 2017;7, 52:55–58.
 
40.
Rozporządzenie Ministra Zdrowia z dnia 10 grudnia 2019 r. w sprawie zgłaszania podejrzeń i rozpoznań zakażeń, chorób zakaźnych oraz zgonów z ich powodu. DzU z 2019 poz. 2430. https://isap.sejm.gov.pl/isap.... (access: 2023.05.01).
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top