Introduction and objective:
Vector diseases are common in Europe, including Poland. Every year, 77,000 Europeans are infected with transmissive diseases as a result of contact with infected vectors. In Poland, ticks are vectors of great epidemiological importance. The most important etiological factors causing disease in humans and transmitted by ticks include bacteria of the genus Borrelia and the species Francisella tularensis, Anaplasma phagophytophilum and Coxiella burnetii; as well as tick-borne encephalitis viruses. The level of the number of diagnosed cases of vector diseases in humans is influenced by environmental conditions, the most important of which is the COVID-19 pandemic that has been spreading for two years.

The aim of the review was to assess knowledge about tick-borne diseases in humans, as well as etiological factors, epidemiology of these diseases in Poland and other European countries. Infection with pathogens can occur both during recreation in nature and during work related to a profession. Professional groups include those particularly exposed to contact with vectors and pathogens – foresters, farmers and soldiers.

Review methods:
A comprehensive assessment was conducted of extant publications.

Brief description of the state of knowledge:
The results of the literature research revealed that in recent years an increase in the number of people suffering from tick-borne diseases has been recorded, possibly influenced by the changing climate. The vector diseases of the greatest importance for the inhabitants of Poland include Lyme disease and tick-borne encephalitis.

Soldiers, as a professional group who perform their duties in an environment where there is a high risk of exposure to infected ticks, are particularly at risk of acquiring transmission of vector diseases.

Buxton M, Buxton MP, Machekano H, et al. A Survey of Potentially Pathogenic-Incriminated Arthropod Vectors of Health Concern in Botswana. Int J Environ Res Public Health. 2021;18(19):10556.
Rossati A. Global warming and its health impact. Int J Occup Environ Med. 2017;8(1):7–20.
Rohr JR, Barrett ChB, Civitello DJ, et al. Emerging human infectious diseases and the links to global food production. Nat Sustain. 2019;2(6):445–456.
Müller R, Reuss F, Kendrovski V, Montag D. Vector borne diseases. Marselle M, Stadler J, Korn H, Irvine K, Bonn A, editors. Biodiversity and health in the face of climate change. Cham: Springer 2019; 67–90.
Andersen LK, Davis P. Climate change and the epidemiology of selected tick-borne and mosquito-borne diseases: update from the international society of dermatology climate change task force. Int J Dermatol. 2017;56(3):252–259.
Global vector control response 2017–2030. 2017. Available at: http:// (access: 27.09.2022 r.).
Gibb R, Franklinos LHV, Redding DW, et al. Ecosystem perspectives are needed to manage zoonotic risks in a changing climate. BMJ 2020; 371:m3389.
Świątkowska B, Hanke W, Szeszenia-Dąbrowska N. Choroby zawodowe w Polsce w 2019 roku. Instytut Medycyny Pracy im. prof. J. Nofera 2020.
Hauck D, Jordan D, Springer A, et al. Transovarial transmission of Borrelia spp., Rickettsia spp. and Anaplasma phagocytophilum in Ixodes ricinus under field conditions extrapolated from DNA detection in questing larvae. Parasit Vectors. 2020;13:176.
González J, González MG, Valcárcel F, et al. Transstadial Transmission from Nymph to Adult of Coxiella burnetii by Naturally Infected Hyalomma lusitanicum. Pathogens. 2020;9(11):884.
Tirloni L, Kim TK, Pinto AFM, et al. Tick-Host Range Adaptation: Changes in Protein Profiles in Unfed Adult Ixodes scapularis and Amblyomma americanum Saliva Stimulated to Feed on Different Hosts. Front Cell Infect Microbiol. 2017;7:517.
Nowak-Chmura M, Siuda K. Ticks of Poland. Review of contemporary issues and latest research. Ann Parasitol. 2012;58 (3):125–155.
Medlock JM, Hansford KM, Bormane A, et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vect. 2013;6:1.
Mierzejewska EJ, Estrada-Pena A, Alsarraf M, et al. Mapping of Dermacentor reticulatus expansion in Poland in 2012–2014. Ticks Tick Borne Dis. 2016;7(1):94–106. http://doi:10.1016/j.ttbdis.20....
Zając Z, Bartosik K, Buczek A. Factors influencing the distribution and activity of Dermacentor reticulatus (F.) ticks in an anthropopressure-unaffected area in central-eastern Poland. Ann Agric Environ Med. 2016;23(2):270–275.
Mysterud A, Jore S, Osteras O, et al. Emergence of tick-borne diseases at northern latitudes in Europe: a comparative approach. Sci Rep. 2017;7: e16316.
Millins C, Gilbert L, Medlock J, et al. Effects of conservation management of landscapes and vertebrate communities on Lyme borreliosis risk in the United Kingdom. Philos Trans R Soc Lond B Biol Sci. 2017;372 (1722): e20160123.
Chomel B, Lyme disease. Rev Sci Tech. 2015;34(2):569–576. http:// doi: 10.20506/rst.34.2.2380.
Beaute J, Spiteri G, Warns-Petit E, et al. Tick-borne encephalitis in Europe, 2012 to 2016. Euro Surveill. 2018;23(45):pii=1800201.
Petrulionien A, Radzišauskiene D, Ambrozaitis A, et al. Epidemiology of Lyme Disease in a Highly Endemic European Zone. Medicina 2020;56:115.
Cook MIJ, Puri BK, Estimates for Lyme borreliosis infections based on models using sentinel canine and human seroprevalence data Estimates for Lyme borreliosis infections based on models using sentinel canine and human seroprevalence data. Infect Dis Model. 2020;16;5:871–888.
Estrada-Pena A, Cutler S, Potkonjak A, et al. An updated meta-analysis of the distribution and prevalence of Borrelia burgdorferi s.l. in ticks in Europe. Int J Health Geogr. 2018;17(1):41.
Maurin M, Gyuranecz M. Tularaemia: clinical aspects in Europe. Lancet Infect Dis. 2016;16 (1):113–124.
European Centre for Disease Prevention and Control. Tularaemia. In: ECDC. Annual epidemiological report for 2019. Stockholm: ECDC; 2021.
Ismail N, McBride J W. Tick-borne emerging infections ehrlichiosis and anaplasmosis. Clin Lab Med. 2017;37(2):317–340.
Matei IA, Estrada-Pena A, Cutler SJ, et al. A review on the eco-epidemiology and clinical management of human granulocytic anaplasmosis and its agent in Europe. Parasit Vect. 2019;12:599.
Azagi T, Hoornstra D, Kremer K, et al. Evaluation of Disease Causality of Rare Ixodes ricinus-Borne Infections in Europe. Pathogens. 2020; 24;9(2):150.
Zhong J. Coxiella-like Endosymbionts. In: Thoman R, Heinzen RA, Samuel JE, et al. Coxiella burnetti: recent advances and new perspectives in research of the Q fever bacterium. Springer. 2012.
Körner S, Makert GR, Ulbert S, et al. The Prevalence of Coxiella burnetii in Hard Ticks in Europe and Their Role in Q Fever Transmission Revisited-A Systematic Review. Front Vet Sci. 2021;8:655715.
Jansen C, Darbro JM, Birrell FA, et al. Impact of COVID-19 Mitigation Measures on Mosquito-Borne Diseases in 2020 in Queensland, Australia. Viruses. 2021;13:1150.
Sebastiao CS, Gaston C, Paixao JP, et al. Coinfection between SARS-CoV-2 and vector-borne diseases in Luanda, Angola. J Med Virol. 2022;94(1):366–371.
Piekarska K, Zacharczuk K, Wołkowicz T, et al. Raport końcowy zawierający trendy i prognozy umieralności i chorobowości z powodu chorób klimatozależnych, a także wnioski i rekomendacje dla jednostek systemu ochrony zdrowia w zakresie adaptacji do zmian klimatu w ramach umowy nr 6/4/5/NPZ/2018/1094/542 na realizację zadania pn.: “Badanie i ocena wpływu klimatu na stan zdrowia oraz wypracowanie działań związanych z adaptacją do jego zmian.” Ministry of Health, December 2020.
Springer A, Raulf MK, Fingerle V, et al. Borrelia prevalence and species distribution in ticks removed from humans in Germany, 2013–2017. Ticks Tick Borne Dis. 2020;11(2):101363.
Gałęziowska E, Rzymowska J, Najda N, et al. Prevalence of Borrelia burgdorferi in ticks removed from skin of people and circumstances of being bitten – research from the area of Poland, 2012–2014. Ann Agric Environ Med. 2018;25(1):31–35.
Kowalec M, Szewczyk T, Welc-Falęciak R, et al. Ticks and the city – are there any differences between city parks and natural forests in terms of tick abundance and prevalence of spirochaetes? Parasit Vect. 2017;10(1):573. http://doi:10.1186/s13071-017-....
Wodecka B. Detection of Borrelia burgdorferi sensu lato DNA in Ixodes ricinus ticks in north- western Poland. Ann Agric Environ Med. 2003; 10:171–178. PMID: 14677908.
Kiewna D, Zaleśny G. Relationship between temporal abundance of ticks and incidence of Lyme borreliosis in Lower Silesia regions of Poland. J Vector Ecol. 2013;38(2):345–352.
Strzelczyk JK, Gaździcka J, Cuber P, et al. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from southern Poland. Acta Parasitol. 2015;60(4):666–674.
Bertolotti L, Tomassone L, Tramuta C, et al. Borrelia lusitaniae and Spotted Fever Group Rickettsiae in Ixodes ricinus (Acari: Ixodidae) in Tuscany, Central Italy. J Med Entomol. 2006;43(2):159–165.
Remesar S, Di´az P, Venzal JM, et al. Longitudinal Study of Infection with Borrelia spp. in Questing Ticks from North-Western Spain. Vector Borne Zoonotic Dis. 2019;19(11):785–792.
Geller J, NazarovaL, Katargina O, Golovljova I. Borrelia burgdorferi sensu lato prevalence in tick populations in Estonia. Parasit Vect. 2013; 3,6:202.
Wilhelmsson P, Lindblom P, Fryland L, et al. Prevalence, diversity, and load of Borrelia species in ticks that have fed on humans in regions of Sweden and Aland Islands, Finland with different Lyme borreliosis incidences. PLoS One. 2013;8(11):e81433. doi:10.1371/journal.pone.0081433.
Kirczuk L, Piotrowski M, Rymaszewska A. Detection of Tick-Borne Pathogens of the Genera Rickettsia, Anaplasma and Francisella in Ixodes ricinus Ticks in Pomerania (Poland). Pathogens. 2021;10:901.
Asman M, Witecka J, Korbecki J, Solarz K. The potential risk of exposure to Borrelia garinii, Anaplasma phagocytophilum and Babesia microti in the Wolinski National Park (north-western Poland). Nature 2021; 11:4860,
Asman M, Witecka J, Solarz K, Zwonik A, Szilman P. Occurrence of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Ixodes ricinus ticks collected from selected areas of Opolskie Province in south-west Poland. Ann Agric Environ Med. 2019;26(4):544–547.
Bielawska-Drózd A, Cieślik P, Żakowska D, et al. Detection of Coxiella burnetii and Francisella tularensis in Tissues of Wild-living Animals and in Ticks of North-west Poland, Pol J Microbiol. 2018;67(4):529–534.
Biernat B, Cieniuch S, Stańczak J. Detection of TBEV RNA in Ixodes ricinus ticks in north-eastern Poland. Ann Agric Environ Med. 2018; 21(4):689–692.
Biernat B, Karbowiak G, Werszko J, et al. Prevalence of tick-borne encephalitis virus (TBEV) RNA in Dermacentor reticulatus ticks from natural and urban environment, Poland. Exp Appl Acarol. 2014;64: 543–551.
Hildebrandt A, Gray J S, Hunfeld KP. Human babesiosis in Europe: what clinicians need to know. Infection. 2018;41(6):1057–1072. 1007/s15010-013-0526-8.
Pawełczyk A, Bednarska M, Hamera A, et al. Long-term study of Borrelia and Babesia prevalence and co-infection in Ixodes ricinus and Dermacentor recticulatus ticks removed from humans in Poland, 2016–2019. Parasit Vect. 2021;14:348.
Robert LL. Malaria prevention and control in the United States military. Med Trop (Mars) 2001;61:67–76.
Britch SC, Linthicum KJ, Anyamba A, et al. Satellite vegetation index data as a tool forecast population dynamics of medically important mosquitos at military installations in the continental Unites States. Mil Med. 2008;173:677–683.
Walton BC, Person D, Bernstein R. Leishmaniasis in the US military in the Canal Zone. Am J Trop Med Hyg. 1968;17:19–24.
Wicki R, Sauter P, Miller C, et al. Swiss Army survey in Switzerland to determine the prevalence of Francisella tularensis, members of the Erlichia phagocytophila genogroup, Borrelia burgdorferi sensu lato, and tick-borne encephalitis virus in ticks. Eur J Clin Microbiol Infect Dis. 2000;19:427–432. http://doi:10.1007/s1009600002....
Vondra E. Ticks cause uptick in disease. 2018 Source: (accessed on 4.1.2022).
Hurt L, Dorsey KA. The geographic distribution of incident lyme disease among active component service members stationed in the continental United States, 2004–2013. MSMR 2014;21(5):13–15.
Schubert S L, Melanson V. Prevalence of Lyme Disease Attributable to Military Service at the USMA, West Point NY: FY2016–2018. Mil Med. 2020;185(1/2):e.28-e34.
Korzeniewski K. Problemy zdrowotne long-term travelers na przykładzie żołnierzy Polskich Kontyngentów Wojskowych w aspekcie praktyki lekarza rodzinnego. Fam Med Prim Care Rev. 2013;15(3): 454–457.