Introduction and objective:
The article analyzes the content of heavy metals and standard physical as well as chemical pollution indicators in different types of sediments from stormwater, combined sewer and sanitary sewer systems.

Material and methods:
Nickel, lead, chromium, copper, zinc and cadmium, as well as standard physical and chemical pollution indicators, were determined in sewage sediments. Aqueous extracts of sediments samples, taken from storm water sewer inlet sediments traps, storm sewers, sanitary sewers and combined sewers, were prepared in accordance with PN-EN 12457–2:2006. After mineralization, the concentrations of the metals: nickel, lead, chromium, copper, zinc and cadmium in the extracts were determined using the inductively coupled plasma emission spectroscopy technique.

The results were analyzed with a non-metric multidimensional scaling algorithm. The heavy metal content was variable depending on the sediments collection site. The heavy metals nickel, lead, chromium, copper, zinc and cadmium were found in the sediments from stormwater inlets, storm sewer and sanitary sewer channels, with variability in the concentration of individual metals. The sediments from the flushing of sanitary sewers and combined sewers did not contain cadmium.

The content of heavy metals in sediments varied depending on the sampling location and type of sewer system, indicating the need for detailed monitoring to identify the sources of emissions. Sediments from stormwater sewers have higher concentrations of heavy metals, with those from sewer inlets showing zinc concentrations exceeding regulatory limits, highlighting the variability and potential environmental impact of different sewer systems.

Polish Ministry of Education and Science within Grant Nos. FD-20/IS-6/999, FD-20/IS-6/019, FD-20/IS-6/021, FD-20/IS-6/037.
Wang S, Shi X. Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem. 2001;222(1–2):3–9.
Beyersmann D, Hartwig A. Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol. 2008;82(8):493–512. doi:10.1007/s00204-008-0313-y.
Cobbina SJ, Chen Y, Zhou Z, Wu X, Zhao T, Zhang Z, et al. Toxicity assessment due to sub-chronic exposure to individual and mixtures of four toxic heavy metals. J Hazard Mater. 2015;294:109–120. doi:10.1016/j.jhazmat.2015.03.057.
Costa M. Review of arsenic toxicity, speciation and polyadenylation of canonical histones. Toxicol Appl Pharmacol. 2019;375:1–4. doi:10.1016/j.taap.2019.05.006.
Gazwi HSS, Yassien EE, Hassan HM. Mitigation of lead neurotoxicity by the ethanolic extract of Laurus leaf in rats. Ecotoxicol Environ Saf. 2020;192:110297. doi:10.1016/j.ecoenv.2020.110297.
Mazumdar M, Bellinger DC, Gregas M, Abanilla K, Bacic J, Needleman HL. Low-level environmental lead exposure in childhood and adult intellectual function: a follow-up study. Environ Health. 2011;10:24. doi:10.1186/1476-069X-10-24.
Koedrith P, Kim H, Weon JI, Seo YR. Toxicogenomic approaches for understanding molecular mechanisms of heavy metal mutagenicity and carcinogenicity. Int J Hyg Environ Health. 2013;216(5):587–598. doi:10.1016/j.ijheh.2013.02.010.
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol. 2021;12(April):1–19. doi:10.3389/fphar.2021.643972.
Obaideen K, Shehata N, Sayed ET, Abdelkareem MA, Mahmoud MS, Olabi AG. The role of wastewater treatment in achieving sustainable development goals (SDGs) and sustainability guideline. Energy Nexus. 2022;7(January):100112. doi:10.1016/
Obradović D, Šperac M, Marenjak S. Challenges in Sewer System Maintenance. Encyclopedia. 2023;3(1):122–142. doi:10.3390/encyclopedia3010010.
Jin S, Zhang K, Cen C, Shuai Y, Hu T, Mao R. Odorous Substances in Urban Drainage Pipelines and the Removal Technology: A Review. Water (Switzerland). 2023;15(6):1–20. doi:10.3390/w15061157.
Drapeau C, Delolme C, Chatain V, Gautier M, Blanc D, Benzaazoua M, et al. Spatial and Temporal Stability of Major and Trace Element Leaching in Urban Stormwater Sediments. Open J Soil Sci. 2017;07(11):347–365. doi:10.4236/ojss.2017.711025.
Kye H, Kim J, Ju S, Lee J, Lim C, Yoon Y. Microplastics in water systems: A review of their impacts on the environment and their potential hazards. Heliyon. 2023;9(3):e14359. doi:10.1016/j.heliyon.2023.e14359.
Egemose S, Sonderup MJ, Grudinina A, Hansen AS, Flindt MR. Heavy metal composition in stormwater and retention in ponds dependent on pond age, design and catchment type. Environ Technol. 2015;36(8):959–969. doi:10.1080/09593330.2014.970584.
Hong N, Yang B, Tsang DCW, Liu A. Comparison of pollutant source tracking approaches: Heavy metals deposited on urban road surfaces as a case study. Environ Pollut. 2020;266:115253. doi:10.1016/j.envpol.2020.115253.
Wang J, Zhang P, Yang L, Huang T. Adsorption characteristics of construction waste for heavy metals from urban stormwater runoff. Chinese J Chem Eng. 2015;23(9):1542–1550. doi:
Gunawardena J, Egodawatta P, Ayoko GA, Goonetilleke A. Atmospheric deposition as a source of heavy metals in urban stormwater. Atmos Environ. 2013;68:235–242. doi:
Cai K, Li C, Na S. Spatial distribution, pollution source, and health risk assessment of heavy metals in atmospheric depositions: A case study from the sustainable city of Shijiazhuang, China. Atmosphere (Basel). 2019;10(4):11–14. doi:10.3390/ATMOS10040222.
Sakson G, Brzezinska A, Zawilski M. Emission of heavy metals from an urban catchment into receiving water and possibility of its limitation n the example of Lodz city. Environ Monit Assess. 2018;190(5). doi:10.1007/s10661-018-6648-9.
McDonald S, Holland A, Simpson SL, Gadd JB, Bennett WW, Walker GW, et al. Metal forms and dynamics in urban stormwater runoff: New insights from diffusive gradients in thin-films (DGT) measurements. Water Res. 2022;209:117967. doi:
Marsalek J. Road salts in urban stormwater: an emerging issue in stormwater management in cold climates. Water Sci Technol. 2003;48(9):61–70. doi:10.2166/wst.2003.0493.
Flanagan K, Blecken GT, Osterlund H, Nordqvist K, Viklander M. Contamination of urban stormwater pond sediments: A study of 259 legacy and contemporary organic substances. Environ Sci Technol. 2021;55(5):3009–3020. doi:10.1021/acs.est.0c07782.
Regulation of the Minister of Climate of January 2, 2020 in the Waste Catalog. (J.L. 2020, Item 10).; 2020.
Waste Act (J.L. 2013 Item 21).; 2013.
Sikorska A. Stabilizacja osadów pochodzących z czyszczenia kanalizacji jako obowiązek nowoczesnej gospodarki obiegu zamkniętego (Stabilization of sludge from sewer cleaning as an obligation of a modern closed loop economy). Forum Eksploatatora. 2019;3(102):66–73.
Regulation of the Ministry of Economy and Labor on the Criteria and Procedures for Admission of Waste to Respective Landfill Types, Journal of Laws 2015, Item 1277.
Milik J, Pasela R. Analysis of concentration trends and origins of heavy metal loads in stormwater runoff in selected cities: A review. E3S Web Conf. 2018;44. doi:10.1051/e3sconf/20184400111.
Bak Ł, Szelag B, Górski J, Górska K. The impact of catchment characteristics and weather conditions on heavy metal concentrations in stormwater-Data mining approach. Appl Sci. 2019;9(11). doi:10.3390/app9112210.
PN-EN 12457-2:2006. Characterisation of Waste– Leaching–Compliance Test for Leaching of Granular Waste Materials and Sludges–Part 4: One Stage Batch Test at a Liquid to Solid Ratio of 10 l/Kg for Materials with Particle Size below 10mm.
Duda-Saternus S, Kujawska J, Wojtaś E, Kozłowska A, Jamka K, Szeląg B, et al. A simplified method for determining potential heavy metal leached from sediments of stormwater and combined sewer systems – importance for public health. Ann Agric Environ Med. 2023;30(3):455–461. doi:10.26444/aaem/170099.
Coulibeuf C. Fast Elemental Determination of Environmental Samples with ICP-OES. Jobin Yvon S.A.S., Horiba Group Longjumeau, France.
Torgerson WS. Multidimensional scaling: I. Theory and method. Psychometrika. 1952;17(4):401–419. doi:10.1007/BF02288916.
Borg I, Groenen P. Modern Multidimensional Scaling. Springer New York; 2005. doi:10.1007/0-387-28981-X.
Kruskal JB. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika. 1964;29(1):1–27. doi:10.1007/BF02289565.
Shepard RN. The analysis of proximities: Multidimensional scaling with an unknown distance function. I. Psychometrika. 1962;27(2):125–140. doi:10.1007/BF02289630.
Borg I, Groenen PJF, Mair P. Applied Multidimensional Scaling. Springer Berlin Heidelberg; 2013. doi:10.1007/978-3-642-31848-1.
Dugard P, Todman J, Staines H. Approaching Multivariate Analysis. Routledge; 2022. doi:10.4324/9781003343097.
R Core Team. R: A Language and Environment for Statistical Computing. Published online 2021.
RStudio Team. RStudio: Integrated Development Environment for R. Published online 2022.
Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.
Venables WN, Ripley BD. Modern Applied Statistics with S. Springer New York; 2002. doi:10.1007/978-0-387-21706-2.
Briffa J, Sinagra E, Blundell R. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon. 2020;6(9):e04691. doi:10.1016/j.heliyon.2020.e04691.
Sharma P, Singh SP, Parakh SK, Tong YW. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered. 2022;13(3):4923–4938. doi:10.1080/21655979.2022.2037273.
Abraham J, Dowling K, Florentine S. Can copper products and surfaces reduce the spread of infectious microorganisms and hospital-acquired infections? Materials (Basel). 2021;14(13):1–27. doi:10.3390/ma14133444.
Vardhan KH, Kumar PS, Panda RC. A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives. J Mol Liq. 2019;290:111197. doi:10.1016/j.molliq.2019.111197.
Jadaa W, Mohammed H. Heavy Metals – Definition, Natural and Anthropogenic Sources of Releasing into Ecosystems, Toxicity, and Removal Methods – An Overview Study. J Ecol Eng. 2023;24(6):249–271. doi:10.12911/22998993/162955.
Wolf J, Sandstead Harold H., Rink L. Chapter 38 – Zinc. In: Nordberg GF, Costa MBTH on the T of M (Fith E, eds. Academic Press; 2022:963–984. doi:
Li S, Fang B, Wang D, Wang X, Man X, Zhang X. Leaching characteristics of heavy metals and plant nutrients in the sewage sludge immobilized by composite phosphorus-bearing materials. Int J Environ Res Public Health. 2019;16(24). doi:10.3390/ijerph16245159.
Rosli NA, Abdul Aziz H, Kueh ABH, Lim LLP, Zawawi MH. Leaching Behaviour of Synthetic Leachate through a Sewage Sludge and Red Gypsum Composite as Intermediate Landfill Cover. Sustain. 2023;15(5). doi:10.3390/su15054229.
Kania M, Gautier M, Blanc D, Lupsea-Toader M, Merlot L, Quaresima MC, et al. Leaching behavior of major and trace elements from sludge deposits of a French vertical flow constructed wetland. Sci Total Environ. 2019;649:544–553. doi:
Gu YG, Huang HH, Liu Y, Gong XY, Liao XL. Non-metric multidimensional scaling and human risks of heavy metal concentrations in wild marine organisms from the Maowei Sea, the Beibu Gulf, South China Sea. Environ Toxicol Pharmacol. 2018;59:119–124. doi:
Gu YG, Jiang SJ, Jordan RW, Huang HH, Wu FX. Nonmetric multidimensional scaling and probabilistic ecological risk assessment of trace metals in surface sediments of Daya Bay (China) using diffusive gradients in thin films. Sci Total Environ. 2023;867:161433. doi:10.1016/j.scitotenv.2023.161433.
Journals System - logo
Scroll to top