Interactions occur between concentrations of metals in the human body and the environment in various geographic locations, which can be of importance for both the proper development and the course of pregnancy.

The aim of the study was to assess the concentrations of Zn, Cu and Cd and Zn:Cu and Zn:Cd molar ratios in the placenta, umbilical cord and in the foetal membrane, and to examine the relationship between concentrations of these elements and the place of residence.

Material and methods:
The research material was obtained from 99 healthy women from north-western and central Poland. Data for the study were collected from the medical history and documents of admission to the ward and documents confirming the birth of the newborn. Concentrations of zinc (Zn), copper (Cu) and cadmium (Cd) were determined using the ICP–AES method (spectrophotometry of atomic absorption) in inductively coupled argon plasma.

The average concentration of Zn, Cu and Cd in afterbirths was ~ 0.01 mg/kg of dry weight (dw). In central Poland, the results revealed a significant increase in zinc in the membrane (OR=1.098, p=0.002), cadmium in the placenta (OR=1.324, p=0.006), Zn:Cu in the membrane (OR=1.012, p<0.001). In north-western Poland, an increase in copper in the membrane (OR=1.239, p=0.025) was revealed.

The use biological materials, such as the placenta, foetal membrane and umbilical cord to assess exposure to heavy metals and necessary elements is justified.

King JC. Zinc: An Essential but Elusive Nutrient. Am J Clin Nutr. 2011; 94(2): 679–684.
Terrin G, Berni Canani R, Di Chiara M, Pietravalle A, Aleandri V, Conte F, et al. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate. Nutrients. 2015; 7(12): 10427–10446.
Christian P, Shahid F, Rizvi A, Klemm RD, Bhutta ZA. Treatment Response to Standard of Care for Severe Anemia in Pregnant Women and Effect of Multivitamins and Enhanced Anthelminthics. Am J Clin Nutr. 2009; 89(3): 853–861.
Christian P, West KP Jr. Interactions between Zinc and Vitamin A: An update. Am J Clin Nutr. 1998; 68(2): 435–441.
Szostak-Węgierek D, Cichocka A. Żywienie kobiet ciężarnych. Wyd. II. PZWL, Warszawa 2012.
Bolesta M, Szostak-Węgierek D. Żywienie kobiety podczas ciąży. Cz II, Witaminy i składniki mineralne. Żyw Człow Metab. 2009; 36(4): 656–664.
Wastney ME, Angelus PA, Barnes RM, Subramanian KN. Zinc absorption, distribution, excretion, and retention by healthy preterm infants. Pediatr Res. 1999; 45(2): 191–6.
Zlotkin SH, Cherian MG. Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr Res. 1988; 24(3): 326–9.
Programme of Nutrition. Complementary Feeding of Young Children Developing Countries: A Review of Current Scientific Knowledge. WHO. (accessed on 21 September 2018).
Keen CL, Uriu-Adams JY, Skalny A, Grabeklis A, Grabeklis S, Green K, et al. The Plausibility of Maternal Nutritional Status Being a Contributing Factor to the Risk for Fetal Alcohol Spectrum Disorders the Potential Influence of Zinc Status as an Example. Biofactors. 2010; 36(2): 125–135.
Puchkova LV, Babich PS, Zatulovskaia YA, Ilyechova EY, Di Sole F. Copper Metabolism of Newborns Is Adapted to Milk Ceruloplasmin as a Nutritive Source of Copper: Overview of the Current Data. Nutrients. 2018; 10(11): 1591.
Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL. Influence of copper on early development: prenatal and postnatal considerations. Biofactors. 2010; 36(2): 136–152.
Myint ZW, Oo TH, Thein KZ, Tun AM, Saeed H. Copper deficiency anemia: review article. Ann Hematol. 2018; 97(9): 1527–1534.
Zhang L, Song L, Liu B, Wu M, Wang L, Zhang B, et al. Prenatal cadmium exposure is associated with shorter leukocyte telomere length in Chinese newborns. BMC Med. 2019; 17(1): 27.
Järup L, Akesson A. Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol. 2009; 238(3): 201–8.
Yang J, Huo W, Zhang B, Zheng T, Li Y, Pan X, et al. Maternal urinary cadmium concentrations in relation to preterm birth in the healthy baby cohort study in China. Environ Int. 2016; 94: 300–306.
Wang H, Liu L, Hu YF, Hao JH, Chen YH, Su PY, et al. Association of maternal serum cadmium level during pregnancy with risk of pretermbirth in a Chinese population. Environ Pollut. 2016; 216: 851–857.
Cheng L, Zhang B, Zheng T, Hu J, Zhou A, Bassig BA, et al. Critical windows of prenatal exposure to cadmium and size at birth. Int J Environ Res Public Health. 2017; 14(1): 58.
Romano ME, Enquobahrie DA, Simpson C, Checkoway H, Williams MA. Maternal body burden of cadmium and offspring size at birth. Environ Res. 2016; 147: 461–468.
Berglund M, Lindberg AL, Rahman M, Yunus M, Grandér M, Lönnerdal B, et al. Gender and age differences in mixed metal exposure and urinary excretion. Environ Res. 2011; 111(8): 1271–1279.
Nishijo M, Satarug S, Honda R, Tsuritani I, Aoshima K. The gender differences in health effects of environmental cadmium exposure and potential mechanisms. Mol Cell Biochem. 2004; 255(1–2): 87–92.
Jacobo-Estrada T, Santoyo-Sánchez M, Thévenod F, Barbier O. Cadmium Handling, Toxicity and Molecular Targets Involved during Pregnancy: Lessons from Experimental Models. Int J Mol Sci. 2017; 18(7): 1590.
Seńczuk W. Toksykologia współczesna, Wyd 1. Wydawnictwo PZWL, Warszawa 2012.
Hemalatha P, Bhaskaram P, Kumar PA, Khan MM, Islam MA. Zinc Status of Breastfed and Formula-fed Infants of Different Gestational Ages. J Trop Pediatrics. 1997; 43(1): 52–54.
Marriott LD, Foote KD, Kimber AC, Delves HT, Morgan JB. Zinc, copper, selenium and manganese blood levels in preterm infants. Arch Dis Child Fetal Neonatal Ed. 2007; 92(6): 494–497.
Pang Y, Applegate TJ. Effects of dietary copper supplementation and copper source on digesta pH, calcium, zinc, and copper complex size in the gastrointestinal tract of the broiler chicken. Poult Sci. 2007; 86(3): 531–7.
Hay RW. Chemia bionieorganiczna. Warszawa. Państwowe Wydawnictwo Naukowe, 1990.
Puzanowska-Tarasiewicz H, Kuźmicka L, Tarasiewicz M. Biological function of some elements and their compounds. III. Zinc – component and activator of enzymes. Pol Merkur Lek. 2009; 27(161): 419–422.
Brzóska M, Moniuszko-Jakoniuk J. Interactions between cadmium and zinc in the organism. Food Chem Toxicol. 2001; 39: 967–971.
Vidal AC, Semenova V, Darrah T, Vengosh A, Huang Z, King K, et al. Maternal cadmium, iron and zinc levels, DNA methylation and birth weight. BMC Pharmacol Toxicol. 2015; 16: 20.
Borowska S, Brzóska MM, Gałażyn-Sidorczuk M, Rogalska J. Effect of an Extract from Aronia melanocarpa L. Berries on the Body Status of Zinc and Copper under Chronic Exposure to Cadmium: An In Vivo Experimental Study. Nutrients. 2017; 9(12): 1374.
Punshon T, Li Z, Jackson BP, Parks WT, Romano M, Conway D, et al. Placental metal concentrations in relation to placental growth, efficiency and birth weight. Environ Int. 2019; 126: 533–542.
Jablonska-Trypuc A. Biological activity selected microelements in skin and their role in diabetes. Przegl Kardiodiabetol. 2007; 2(2): 122.
Kippler M, Hoque AM, Raqib R, Ohrvik H, Ekström EC, Vahter M. Accumulation of cadmium in human placenta interacts with the transport of micronutrients to the fetus. Toxicol Lett. 2010; 192(2): 162–8.
Aoyagi S, Baker DH. Copper-amino acid complexes are partially protected against inhibitory effects of L-cysteine and L-ascorbic acid on copper absorption in chicks. J Nutr. 1994 Mar; 124(3): 388–95. Erratum in: J Nutr 1994; 124(6): 914.
Karmowska G, Krawczyk M, Kryk B, Maniak G, Marciniak M. Czynniki podnoszenia jakości życia i dostępności do usług publicznych na obszarze województwa zachodniopomorskiego. Raport wykonany na zlecenie Wydziału Zarządzania Strategicznego Urzędu Marszałkowskiego Województwa Zachodniopomorskiego. Szczecin, 16 czerwca 2014.
Statistical Yearbook of Industry- Poland 2015, Główny Urząd Statystyczny, Warszawa 2015. file:///Users/nataliatomska/Desktop/rocznik_statystyczny_przemyslu.pdf.
Strategy for Development of the Kutno District for the years 2015–2020, Kutno 2015.
Central Statistical Office. Environmental Protection. Warsaw 2016.
Kalisińska E, Salicki W, Mysłek P, Kavetska KM, Jackowski A. Using the mallard to biomonitor heavy metal contamination of wetlandsin north-western Poland. Sci Total Environ 2004; 320: 145–161.
Kalisińska E, Salicki W, Kavetska KM, Ligocki M. Trace metal concentrations are higher in cartilage than in bones of scaup and pochard wintering in Poland. Sci Total Environ 2007; 388(1–3): 90–103.
Kalisinska E, Lanocha-Arendarczyk N, Kosik-Bogacka D, Budis H, Pilarczyk B, Tomza-Marciniak A, et al. Muscle mercury and selenium in fishes and semiaquatic mammals from a selenium-deficient area. Ecotox Environ Safe. 2017; 136, 24–30.
Zinc. Environmental Health Criteria 221, 2001. WHO.
Donald GB. Copper. J Toxicol Clin Toxicol. 1999; 2: 217–230.
Safety evaluation of certain food additives and contaminants: Prepared by the Seventy fourth meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). WHO. Geneva. 2011; 305–380. [Google Scholar].
Kubala-Kukuś A, Banaś D, Braziewicz J, Majewska U, Pajek M. Comparative study of trace element contents in human full-term placenta and fetal membranes by total reflection X-ray fluorescence. SPECTROCHIM ACTA B. 2003; 58: 725–734.
Cerrillos L, Fernández R, Machado MJ, Morillas I, Dahiri B, Paz S, et al. Placental levels of metals and associated factors in urban and sub-urban areas of Seville (Spain). J Trace Elem Med Biol. 2019; 54: 21–26.
Amaya E, Gil F, Freire C, Olmedo P, Fernandez-Rodriguez M, Fernandez MF, et al. Placental concentrations of heavy metals in a mother-child cohort. Environ Res. 2013; 120: 63–70.
Sorkun HC, Bir F, Akbulut M, Divrikli U, Erken G, Demirhan H, et al. The effects of air pollution and smoking on placental cadmium, zinc concentration and metallothionein expression. Toxicology. 2007; 238(1): 15–22.
Sudo N, Sekiyama M, Watanabe C, Bokul AT, Ohtsuka R. Gender differences in food and energy intake among adult villagers in northwestern Bangladesh: a food frequency questionnaire survey. Int J Food Sci Nutr. 2004; 55(6): 499–509.
Simmons RW, Pongsakul P, Saiyasitpanich D, Klinphoklap S. Elevated levels of cadmium and zinc in paddy soils and elevated levels of cadmium in rice grain downstream of a zinc mineralized area in Thailand: implications for public health. Environ. Geochem Health. 2005; 27(5–6): 501–511.
Cottrell JN, Thomas DS, Mitchell BL, Childress JE, Dawley DM, Harbrecht LE, et al. Rural and urban differences in prenatal exposure to essential and toxic elements. J Toxicol Environ Health A. 2018; 81(23): 1214–1223.
Iwai-Shimada M, Kameo S, Nakai K, Yaginuma-Sakurai K, Tatsuta N, Kurokawa N, et al. Exposure profile of mercury, lead, cadmium, arsenic, antimony, copper, selenium and zinc in maternal blood, cord blood and placenta: the Tohoku Study of Child Development in Japan. Environ Health Prev Med. 2019; 24(1): 35.
Zhou C, Zhang R, Cai X, Xiao R, Yu H. Trace elements profiles of maternal blood, umbilical cord blood, and placenta in Beijing, China. J Matern Fetal Neonatal Med. 2017; 21: 1–7.
Liang CM, Wu XY, Huang K, Yan SQ, Li ZJ, Xia X, et al. Trace element profiles in pregnant women’s sera and umbilical cord sera and influencing factors: Repeated measurements. Chemosphere. 2019; 218: 869–878.
Kocyłowski R, Lewicka I, Grzesiak M, Gaj Z, Oszukowski P, von Kaisenberg C, et al. Evaluation of mineral concentrations in maternal serum before and after birth and in newborn cord blood postpartum-preliminary study. Biol Trace Elem Res. 2018; 182(2): 217–223.
Walker J, Houseman J, Seddon L, McMullen E, Tofflemire K, Mills C, et al. Maternal and umbilical cord blood levels of mercury, lead, cadmium, and essential trace elements in Arctic Canada. Environ Res. 2006; 100(3): 295–318.
Iyengar GV, Rapp A. Human placenta as a ‘dual’ biomarker for monitoring fetal and maternal environment with special reference to potentially toxic trace elements, part 3: toxic trace elements in placenta and placenta as a biomarker for these elements. Sci Total Environ. 2001; 280(1–3): 221–238.
Tian LL, Zhao YC, Wang XC, Gu JL, Sun ZJ, Zhang YL, et al. Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years. Biol Trace Elem Res. 2009; 132(1–3): 51–59.
Kim YM, Chung JY, An HS, Park SY, Kim BG, Bae JW, et al. Biomonitoring of lead, cadmium, total mercury, and methylmercury levels in maternal blood and in umbilical cord blood at birth in South Korea. Int J Environ Res Public Health. 2015; 12(10): 13482–13493.
Li A, Zhuang T, Shi J, Liang Y, Song M. Heavy metals in maternal and cord blood in Beijing and their efficiency of placental transfer. J Environ Sci. 2019; 80: 99–106.
Sakamoto M, Yasutake A, Domingo JL, Chan HM, Kubota M, Murata K. Relationships between trace element concentrations in chorionic tissue of placenta and umbilical cord tissue: potential use as indicators for prenatal exposure. Environ Int. 2013; 60: 106–111.
Kozikowska I, Binkowski ŁJ, Szczepańska K, Sławska H, Miszczuk K, Śliwińska M, et al. Mercury concentrations in human placenta, umbilical cord, cord blood and amniotic fluid and their relations with body parameters of newborns. Environ Pollut. 2013; 182: 256–262.
Ni W, Yang W, Yu J, Li Z, Jin L, Liu J, et al. Association between selected essential trace element concentrations in umbilical cord and risk for cleft lip with or without cleft palate: A case-control study. Sci Total Environ. 2019; 661: 196–202.
Wisniewska M, Cremer M, Wiehe L, Becker NP, Rijntjes E, Martitz J, et al. Copper to Zinc Ratio as Disease Biomarker in Neonates with Early-Onset Congenital Infections. Nutrients. 2017; 9(4): 343.
Jin L, Zhang L, Li Z, Liu JM, Ye R, Ren A. Placental concentrations of mercury, lead, cadmium, and arsenic and the risk of neural tube defects in a Chinese population. Reprod Toxicol. 2013; 35: 25–31.
Rice D, Barone S. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000; 108(3): 511–533.
Osman K, Åkesson A, Berglund M, Bremme K, Schütz A, Ask K, et al. Toxic and essential elements in placentas of swedish women. Clin Biochem. 2000; 33(2): 131–138.
Wells EM, Jarrett JM, Lin YH, Caldwell KL, Hibbeln JR, Apelberg BJ, et al. Body burdens of mercury, lead, selenium and copper among Baltimore newborns. Environ Res. 2011; 111(3): 411–417.