REVIEW PAPER
The Mycobacterium avium complex – an underestimated threat to humans and animals
More details
Hide details
1
Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
2
Department of Preclinical Sciences, Institute of Veterinary Medicine, University of Life Sciences, Warsaw, Poland
Corresponding author
Aleksandra Kaczmarkowska
Department of Food Hygiene and Public Health Protection, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776, Warsaw, Poland
Ann Agric Environ Med. 2022;29(1):22-27
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
The Mycobacterium avium complex (MAC) is a group of acid-resistant bacteria within the Mycobacteriaceae. Their cell walls have a specific structure impervious to many disinfectants. Mycobacteria are widespread in the environment and can also be found in food. This aim of the article is to review the current state of knowledge about the sources of infection, symptoms and treatment of MAC diseases in humans and animals, and summarizes the available methods for identifying the bacteria. It pays a special attention to the zoonotic potential of MAC bacteria and possible routes of transmission between humans and animals, including possible food-borne routes.
Brief description of the state of knowledge.:
MAC bacterial infections occur both in immunocompetent people and those with functional predispositions and compromised immunity, particularly during HIV infection or immunosuppressive treatment. The incidence of MAC infections in humans is growing, with the most common form of infection being pulmonary disease (MTC-PD); however, there are conflicting reports on the role of Mycobacterium avium paratuberculosis (MAP) in the development of Crohn’s disease. MAC bacteria can also attack livestock, household pets, and wild animals. Unfortunately, treatment is lengthy and often fails due to microbiological relapse; there is also increasing evidence of MAC bacteria are developing multi-drug resistance.
Conclusions:
Although new antibiotics are being created to inhibit the growth and division of Mycobacterium avium, there is clearly a need for further research into the virulence factors associated with MAC bacteria. Further studies should also examine the role of MAP in the etiopathogenesis of Crohn’s disease.
REFERENCES (83)
1.
Choi SR, Britigan BE, Switzer B, et al. In Vitro Efficacy of Free and Nanoparticle Formulations of Gallium(III) meso-Tetraphenylporphyrine against Mycobacterium avium and Mycobacterium abscessus and Gallium Biodistribution in Mice. Mol Pharm. 2018; 15(3): 1215–1225.
https://doi.org/10.1021/acs.mo....
2.
Ratnatunga CN, Lutzky VP, Kupz A, et al. The Rise of Non-Tuberculosis Mycobacterial Lung Disease. Front Immunol. 2020; 11: 303. doi: 10.3389/fimmu.2020.00303.
3.
Nishiuchi Y, Iwamoto T, Maruyama F. Infection Sources of a Common Non-tuberculous Mycobacterial Pathogen, Mycobacterium avium complex. Front Med (Lausanne). 2017; 4: 27.
https://doi.org/10.3389/fmed.2....
4.
Klanicova B, Slana I, Vondruskova H, et al. Real-time quantitative PCR detection of Mycobacterium avium subspecies in meat products. J Food Prot. 2011; 74(4): 636–640.
https://doi.org/10.4315/0362-0....
5.
Gerrard ZE, Swift BMC, Botsaris G, et al. Survival of Mycobacterium avium subspecies paratuberculosis in retail pasteurised milk. Food Microbiol. 2018; 74: 57–63. doi: 10.1016/j.fm.2018.03.004.
7.
Falkinham JO. Surrounded by mycobacteria: nontuberculous mycobacteria in the human environment. J Appl Microbiol. 2009; 107(2): 356–367.
https://doi.org/10.1111/j.1365....
10.
van Ingen J, Turenne CY, Tortoli E, et al. A definition of the Myco -bacterium avium complex for taxonomical and clinical purposes, a review. Int J Syst Evol Microbiol. 2018; 68(11): 3666–3677.
https://doi.org/10.1099/ijsem.....
11.
Klotz D, Barth SA, Baumgartner W, et al. Mycobacterium avium subsp. hominissuis infection in a domestic rabbit. Emerg Infect Dis. 2018; 24(3): 596–598.
https://doi.org/10.3201/eid240....
12.
Kinoshita Y, Takechi M, Uchida-Fujii E, et al. Ten cases of Mycobacterium avium subsp. hominissuis infections linked to equine abortions in Japan, 2018–2019. Vet Med Sci. 2020; 00: 1–5. doi: 10.1002/vms3.411.
13.
Madarame H, Saito M, Ogihara K, et al. Mycobacterium avium subsp. hominissuis menigoencephalitis in a cat. Vet Microbiol. 2017; 204: 43–45.
https://doi.org/10.1016/j.vetm....
14.
Scherrer S, Stephan R, Zumthor JP, et al. Morphological and Molecular Characterization of a New Mycobacterium avium subsp. Para tuber-culosis S-Type Strain Genotype in Goats. Front Vet Sci. 2019; 6(250).
https://doi.org/10.3389/fvets.....
15.
Kohler P, Kuster SP, Bloemberg G, et al. Healthcare-associated prosthetic heart valve, aortic vascular graft, and disseminated Mycobacterium chimaera infections subsequent to open heart surgery. Eur Heart J. 2015; 21(40): 2745–2753.
https://doi.org/10.1093/eurhea....
16.
Lahiri A, Kneisel J, Kloster I, et al. Abundance of Mycobacterium avium ssp. hominissuis in soil and dust in Germany – implications for the infection route. Lett Appl Microbiol. 2014; 59(1): 65–70. doi: 10.1111/lam.12243.
17.
Honda JR, Virdi R, Chan ED. Global Environmental Nontuberculous Mycobacteria and Their Contemporaneous Man-Made and Natural Niches. Front Microbiol. 2018; 9: 2029. doi: 10.3389/fmicb.2018.02029. PMID: 30214436; PMCID: PMC6125357.
18.
Whiley H, Keegan A, Giglio S, et al. Mycobacterium avium complex-the role of potable water in disease transmission. J Appl Microbiol. 2012; 113(2): 223–232.
https://doi.org/10.1111/j.1365....
19.
Cardoso-Toset F, Gómez-Laguna J, Amarilla SP, et al. Multi-Etiological Nature of Tuberculosis-Like Lesions in Condemned Pigs at the Slaughterhouse. PLoS One. 2015; 10: e0139130.
https://doi.org/10.1371/journa....
20.
Sgarioni SA, Hirata RD, Hirata MH, et al. Occurrence of Mycobacterium bovis and non-tuberculous mycobacteria (NTM) in raw and pasteurized milk in the northwestern region of Paraná, Brazil. Braz J Microbiol. 2014; 45(2): 707–711.
https://doi.org/10.1590/s1517-....
21.
Sevilla IA, Molina E, Tello M, et al. Detection of Mycobacteria by Culture and DNA-Based Methods in Animal-Derived Food Products Purchased at Spanish Supermarkets. Front Microbiol. 2017; 8: 1–10.
https://doi.org/10.3389/fmicb.....
22.
Dziedzinska R, Makovcova J, Kaevska M, et al. Nontuberculous Mycobacteria on Ready-to-Eat, Raw and Frozen Fruits and Vegetables. J Food Prot. 2016; 79(8): 1452–1456.
https://doi.org/10.4315/0362-0....
23.
Thomson, R, Tolson C, Carter R, et al. Isolation of nontuberculous mycobacteria (NTM) from household water and shower aerosols in patients with pulmonary disease caused by NTM. J Clin Microbiol. 2013; 51(9): 3006–3011.
https://doi.org/10.1128/JCM.00....
24.
Cirillo JD, Falkow S, Tompkins LS, et al. Interaction of Mycobacterium avium with environmental amoebae enhances virulence. Infect Immun. 1997; 65(9): 3759–3767.
https://doi.org/10.1128/IAI.65....
25.
Steinert M, Birkness K, White E, et al. Mycobacterium avium bacilli grow saprozoically in coculture with Acanthamoeba polyphaga and survive within cyst walls. Appl Environ Microbiol. 1998; 64(6): 2256–2261.
https://doi.org/10.1128/AEM.64....
26.
Mayahi M, Mosavari N, Esmaeilzadeh S, et al. Comparison of four different culture media for growth of Mycobacterium avium subsp. avium isolated from naturally infected lofts of domestic pigeons. Iran J Microbiol. 2013; 5(4): 379–382.
27.
Kabongo Kayoka PN, Obi CL, Nakajima C, et al. Novel Mycobacterium avium Complex Species Isolated From Black Wildebeest (Connochaetes gnou) in South Africa. Transbound Emerg Dis. 2017; 64(3): 929–937.
https://doi.org/10.1111/tbed.1....
28.
Kehrmann J, Schoerding A K, Murali R, et al. Performance of Vitek MS in identifying nontuberculous mycobacteria from MGIT liquid medium and Lowenstein-Jensen solid medium. Diagn Micr Infec Dis. 2016; 84(1): 43–47.
https://doi.org/10.1016/j.diag....
29.
Nemati M. Detection of Mycobacterium avium subsp. paratuberculosis in the mesenteric lymph nodes of goats by PCR and culture. J Livest Sci Technol. 2015; 3(2): 56–60.
30.
Hemati Z, Haghkhah M, Derakhshandeh A, et al. Novel recombinant Mce-truncated protein based ELISA for the diagnosis of Mycobacterium avium subsp. paratuberculosis infection in domestic livestock. PLoS One. 2020; 15(6): e0233695.
https://doi.org/10.1371/journa....
31.
Boadella M, Lyashchenko K, Greenwald R, et al. Serologic tests for detecting antibodies against Mycobacterium bovis and Mycobacterium avium subspecies paratuberculosis in Eurasian wild boar (Sus scrofa scrofa). J Vet Diagn Invest. 2011; 23(1): 77–83.
https://doi.org/10.1177/104063....
32.
Kumthekar S, Manning EJ, Ghosh P, et al. Mycobacterium avium subspecies paratuberculosis confirmed following serological surveillance of small ruminants in Grenada, West Indies. J Vet Diagn Invest. 2013; 25(4): 527–530.
https://doi.org/10.1177/104063....
33.
Gumber S, Eamens G, Whittington RJ. Evaluation of a Pourquier ELISA kit in relation to agar gel immunodiffusion (AGID) test for assessment of the humoral immune response in sheep and goats with and without Mycobacterium paratuberculosis infection. Vet Microbiol. 2006; 115(1–3): 91–101.
https://doi.org/10.1016/j.vetm....
35.
Nour-Neamatollahie A, Ebrahimzadeh N, Siadat SD, et al. Distribution of non-tuberculosis mycobacteria strains from suspected tuberculosis patients by heat shock protein 65 PCR–RFLP. Saudi J Biol Sci. 2017; 24(6), 1380–1386. doi: 10.1016/j.sjbs.2016.02.001.
36.
Huh HJ, Kim SY, Shim HJ, et al. GenoType NTM-DR Performance Evaluation for Identification of Mycobacterium avium Complex and Mycobacterium abscessus and Determination of Clarithromycin and Amikacin Resistance. J Clin Microbiol. 2019; 57(8): 00516–00519.
https://doi.org/10.1128/JCM.00....
37.
Jonsson J, Hoffner S, Berggren I, et al. Comparison between RFLP and MIRU-VNTR Genotyping of Mycobacterium tuberculosis Strains Isolated in Stockholm 2009 to 2011. PLoS ONE. 2014; 9(4): e95159.
https://doi.org/10.1371/journa....
38.
Mediavilla-Gradolph MC, De Toro-Peinado I, Bermúdez-Ruiz MP, et al. Use of MALDI-TOF MS for Identification of Nontuberculous Mycobacterium Species Isolated from Clinical Specimens. BioMed Res Int. 2015; 1–6. doi: 10.1155/2015/854078.
39.
Alcolea-Medina A, Fernandez MTC, Montiel N, et al. An improved simple method for the identification of Mycobacteria by MALDI-TOF MS (Matrix-Assisted Laser Desorption- Ionization mass spectrometry). Sci Rep. 2019; 9(1): 20216.
https://doi.org/10.1038/s41598....
40.
Neuschlova M, Vladarova M, Kompanikova J, et al. Identification of Mycobacterium Species by MALDI-TOF Mass Spectrometry. Adv Exp Med Biol. 2017; 1021: 37–42.
https://doi.org/10.1007/5584_2....
41.
Sangari FJ, Goodman J, Petrofsky M, et al. Mycobacterium avium invades the intestinal mucosa primarily by interacting with enterocytes.Infect Immun. 2001; 69(3): 1515–1520.
https://doi.org/S10.1128/IAI.6....
42.
Hulinova Stromerova N, Faldyna M. Mycobacterium avium complex infection in pigs: A review. Comp Immunol Microbiol Infect Dis. 2018; 57: 62–68.
https://doi.org/10.1016/j.cimi....
43.
Ferraz JC, Melo FBS, Albuquerque MFPM, et al. Immune factors and immunoregulation in tuberculosis. Braz J Med Biol Res. 2006; 39(11): 1387–1397.
http://dx.doi.org/10.1590/S010....
44.
Heidary M, Nasiri MJ, Mirsaeidi M, et al Mycobacterium avium complex infection in patients with human immunodeficiency virus: A systematic review and meta-analysis. J Cell Physiol. 2019; 234(7): 9994–10001.
https://doi.org/10.1002/jcp.27....
45.
van Ingen J, Griffith DE, Aksamit TR, et al. Pulmonary diseases caused by non-tuberculous mycobacteria. European Respiratory Monograph, 2012; 58: 25–37.
https://doi.org/10.1183/102544....
46.
Shah NM, Davidson JA, Anderson LF, et al. Pulmonary Mycobacterium avium-intracellulare is the main driver of the rise in non-tuberculous mycobacteria incidence in England, Wales and Northern Ireland, 2007–2012. BMC Infect Dis. 2016; 16: 195.
https://doi.org/10.1186/s12879....
48.
Cowman S, van Ingen J, Griffith DE, Loebinger MR. Non-tuberculous mycobacterial pulmonary disease. Eur Respir J. 2019; 54(1): 1900250. doi: 10.1183/13993003.00250-2019.
49.
Wassilew N, Hoffmann H, Andrejak C, et al. Pulmonary Disease Caused by Non-Tuberculous Mycobacteria. Respiration. 2016; 91(5): 386–402.
https://doi.org/10.1159/000445....
50.
Dyer J, Weiss J, Steiner WS, et al. Primary cutaneous Mycobacterium avium complex infection following squamous cell carcinoma excision. Cutis. 2016; 98(6): E8-E11.
51.
McNees AL, Markesich D, Zayyani NR, et al. Mycobacterium paratuberculosis as a cause of Crohn’s disease. Expert Rev Gastroenterol Hepatol. 2015; 9(12): 1523–1534.
https://doi.org/10.1586/174741....
52.
Davis WC. On deaf ears, Mycobacterium avium paratuberculosis in pathogenesis Crohn’s and other diseases. World J Gastroenterol. 2015; 21(48): 13411–13417.
https://doi.org/10.3748/wjg.v2....
53.
Naser SA, Sagramsingh SR, Naser AS, et al. Mycobacterium avium subspecies paratuberculosis causes Crohn’s disease in some inflammatory bowel disease patients. World J Gastroenterol. 2014; 20(23): 7403–7415.
https://doi.org/10.3748/wjg.v2....
54.
Sechi LA, Dow CT. Mycobacterium avium ss. paratuberculosis Zoonosis – The Hundred Year War – Beyond Crohn’s Disease. Front Immunol. 2015; 6: 96.
https://doi.org/10.3389/fimmu.....
55.
Kim MC, Kim J, Kang W, et al. Systemic infection of Mycobacterium avium subspecies hominissuis and fungus in a pet dog. J Vet Med Sci. 2016; 78(1): 157–60. doi: 10.1292/jvms.15-0285.
56.
Yoshida S, Araki T, Asai T, et al. Phylogenetic uniqueness of Mycobacterium avium subspecies hominissuis isolated from an abnormal pulmonary bovine case. Infect Genet Evol. 2018; 62: 122–129.
https://doi.org/10.1016/j.meeg....
57.
Sattar A, Zakaria Z, Abu J, et al. Isolation of Mycobacterium avium and other nontuberculous mycobacteria in chickens and captive birds in peninsular Malaysia. BMC Vet Res. 2021; 17(1): 13. doi: 10.1186/s12917-020-02695-8.
58.
Ghielmetti G, Giger U. Mycobacterium avium: an Emerging Pathogen for Dog Breeds with Hereditary Immunodeficiencies. Curr Clin Micro Rpt. 2020; 7: 67–80.
https://doi.org/10.1007/s40588....
59.
Kontos V, Papadogiannakis EI, Mantziaras G, et al. A Case of Disseminated Mycobacterium avium Infection in a Dog in Greece. Case Rep Vet Med. 2014; 1–3. 2014.
60.
Barandiaran S, Martínez Vivot M, Falzoni E, et al. Mycobacterioses in dogs and cats from Buenos Aires, Argentina. J Vet Diagn Invest. 2017; 29(5): 729–732.
https://doi.org/10.1177/104063....
61.
Miller MA, Davey SC, van Helden LS, et al. Paratuberculosis in a domestic dog in South Africa. J S Afr Vet Assoc. 2017; 88(0): e1-e5.
https://doi.org/10.4102/jsava.....
62.
Glanemann B, Schönenbrücher H, Bridger N, et al. Detection of Mycobacterium avium subspecies paratuberculosis-specific DNA by PCR in intestinal biopsies of dogs. J Vet Intern Med. 2008; 22(5): 1090–1094.
https://doi.org/10.1111/j.1939....
64.
Paharsingh I, Suepaul R, Gyan L, et al. Disseminated Mycobacterium avium subsp. hominissuis infection and ascites in an FIV-positive cat. Vet Clin Pathol. 2020; 00: 1–5. doi: 10.1111/vcp.12897.
65.
Polaček V, Vidanović D, Božić B, et al. The Role of Myofibroblasts in Granulomatous Lymphadenitis in Pigs Naturally Infected with M. avium subsp. hominissuis. Mac Vete Rev. 2018; 41(1): 47–53.
https://doi.org/10.1515/macvet....
66.
Agdestein A, Olsen I, Jørgensen A, et al. Novel insights into transmission routes of Mycobacterium avium in pigs and possible implications for human health. Vet Res. 2014; 45(1): 1–8.
https://doi.org/10.1186/1297-9....
67.
Shin JI, Shin SJ, Shin MK. Differential Genotyping of Mycobacterium avium Complex and Its Implications in Clinical and Environmental Epidemiology. Microorganisms. 2020; 8(1): 98. doi: 10.3390/microorganisms8010098.
68.
Hiller A, Oorburg D, Wisselink H, et al. Prevalence of Mycobacterium avium in Slaughter Pigs Based on Serological Monitoring Results and Bacteriological Validation. Int J Environ Res Public Health. 2013; 10(9): 4027–4038.
https://doi.org/10.3390/ijerph....
69.
Komatsu T, Inaba N, Kondo K, et al. Systemic mycobacteriosis caused by ‘Mycobacterium avium subspecies hominissuis’ in a 14-month-old Japanese black beef steer. J Vet Med Sci. 2017; 79(8): 1384–1388. doi: 10.1292/jvms.17-0204.
70.
Scherrer S, Landolt P, Carroli N, et al. Molecular Characterization of Mycobacterium avium subsp. hominissuis of Two Groups of Lymph Nodes, Being Intradermal Tuberculin or Interferon-Gamma Test Positive and Negative, Isolated from Swiss Cattle at Slaughter. Front Vet Sci. 2018; 5: 32. doi: 10.3389/fvets.2018.00032.
71.
Bates A, O’Brien R, Liggett S, et al. Control of Mycobacterium avium subsp. paratuberculosis infection on a New Zealand pastoral dairy farm. BMC Vet Res. 2019; 15(1): 266.
https://doi.org/10.1186/s12917....
72.
Rasmussen P, Bakema HW, Mason S, et al. Economic losses due to Johne’s disease (paratuberculosis) in dairy cattle. J Diary Sci. 2021; 104(3): 3123–3143.
https://doi.org/10.3168/jds.20....
73.
Ryhner T, Wittenbrink M, Nitzl D, et al. Infection with Mycobacterium avium subspecies avium in a 10 year old Freiberger mare. Schweiz Arch Tierheilkd. 2009; 151(9): 443–447.
https://doi.org/10.1024/0036-7....
74.
Ledwoń A, Napiórkowska A, Augustynowicz-Kopeć E, et al. Drug Susceptibility of Non-tuberculous Strains of Mycobacterium Isolated from Birds from Poland. Pol J Microbiol. 2018; 67(4): 487–492.
https://doi.org/10.21307/pjm-2....
76.
Dhama K, Mahendran M, Tiwari R, et al. Tuberculosis in Birds: Insights into the Mycobacterium avium Infections. Vet Med Int. 2011; 712369.
https://doi.org/10.4061/2011/7....
77.
Garcia-Marcos PW, Plaza-Fornieles M, Menasalvas-Ruiz A, et al. Risk factors of non-tuberculous mycobacterial lymphadenitis in children: a case-control study. Eur J Pediatr. 2017; 176(5): 607–613.
https://doi.org/10.1007/s00431....
78.
Lam A, Foster D. Martin P, et al. Treatment of Mycobacterium avium infection in a dog. Aust Vet Pract. 2012; 42(2): 234–239.
79.
Moon SM, Park HY, Kim SY, et al. Clinical Characteristics, Treatment Outcomes, and Resistance Mutations Associated with Macrolide-Resistant Mycobacterium avium Complex Lung Disease. Antimicrob Agents Chemother. 2016; 60(11): 6758–6765.
https://doi.org/10.1128/AAC.01....
80.
Fukushima K, Kitada S, Komukai S, et al. First line treatment selection modifies disease course and long-term clinical outcomes in Mycobacterium avium complex pulmonary disease. Sci Rep. 2021; 11(1):1178.
https://doi:10.1038/s41598-021....
82.
Chin KL, Sarmiento ME, Alvarez-Cabrera N, et al. Pulmonary non-tuberculous mycobacterial infections: current state and future management. Eur J Clin Microbiol Infect Dis. 2020; 39(5): 799–826.
https://doi.org/10.1007/s10096....