RESEARCH PAPER
Figure from article: Serological evidence of...
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Anaplasma bacteria are intracellular, gram-negative microorganisms transmitted by ticks that can pose a threat to the health of both animals and humans. In our geographical conditions, the transmission of Anaplasmas occurs mainly through ticks of the species Ixodes ricinus, which represent the most abundant species in Slovakia. The aim of the study is to investigate the seroprevalence of Anaplasma spp. antibodies in cattle, sheep and goats across Slovakia.

Material and methods:
The study involved serological testing of 156 cattle, 124 sheep and 104 goats from various regions of Slovakia. A total of 384 serum samples were analysed through the use of the competitive ELISA method.

Results:
The seropositivity was 10.90% in cattle, 70.16% in sheep and 43.27% in goats.

Conclusions:
The study additionally identified regional variations, indicating that environmental conditions, vector ecology, and animal management practices, play a role in the transmission of Anaplasma spp. These findings emphasise the need for targeted strategies for the prevention and control of anaplasmosis, tailored to specific species and regions, to reduce its economic and health impacts on livestock. The results contribute to the growing body of knowledge on Anaplasma epidemiology, highlighting the importance of ongoing surveillance to manage its effects. Given the zoonotic potential of anaplasmosis, it is important to analyse the results obtained also from the One Health perspective.
FUNDING
The study was conducted under the Project IGA No. UVLF 03/2025 ‘Identification and occurrence of Anaplasma capra in livestock and wild animals in the Slovak Republic’ and project KEGA 007UVLF-4/2025. Funded by the European Union under the project 101132974 - OH SURVector. Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Health and Digital Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.
REFERENCES (26)
1.
Stanko M, Derdáková M, Špitalská E, et al. Ticks and their epidemiological role in Slovakia: from the past till present. Biologia (Bratisl). 2022;77(6):1575–1610. https://doi:10.1007/s11756-021....
 
2.
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol. 2013;3:31. https://doi:10.3389/fcimb.2013....
 
3.
Ekner A, Dudek K, Sajkowska Z, et al. Anaplasmataceae and Borrelia burgdorferi sensu lato in the sand lizard Lacerta agilis and co-infection of these bacteria in hosted Ixodes ricinus ticks. Parasit Vectors. 2011;4:182. https://doi:10.1186/1756-3305-....
 
4.
Khan A, Nasreen Mitchel RD, Niaz S, et al. Seroprevalence of Anaplasma spp. among sheep and goats in Charsadda district, Pakistan. Small Rumin. Res. 2019;176:5–10. https://doi:10.1016/j.smallrum....
 
5.
Sawczyn-Domańska A, Wójcik-Fatla A. Detection and prevalence of Anaplasma phagocytophilum in Ixodes ricinus ticks in eastern Poland. Ann Agric Environ Med. 2024;31(3):439–441. https://doi:10.26444/aaem/1922....
 
6.
Dugat T, Lagrée AC, Maillard R, et al. Opening the black box of Anaplasma phagocytophilum diversity: current situation and future perspectives. Front Cell Infect Microbiol. 2015;5:61. https://doi:10.3389/fcimb.2015....
 
7.
Selim A, Attia KA, Alsubki RA, et al. The first study on the seroprevalence of Anaplasma spp. in small ruminants and assessment of associated risk factors in North Egypt. Vet World. 2022;15(5):1221–1227. https://doi:10.14202/vetworld.....
 
8.
Lysholm S, Ådén F, Aspán A, et al. Presence of Anaplasma spp. and Their Associated Antibodies in the Swedish Goat Population. Animals (Basel). 2023;13(3):333. https://doi:10.3390/ani1303033....
 
9.
Rar V, Tkachev S, Tikunova N. Genetic diversity of Anaplasma bacteria: Twenty years later. Infect Genet Evol. 2021;91:104833. https://doi:10.1016/j.meegid.2....
 
10.
Mikalauskie D, Miknienė Z. Anaplasma phagocytophilum in temperate and cold regions of Europe: a review on its prevalence in livestock. Biologija 2023;69(3):240–249. https://doi.org/10.6001/biolog....
 
11.
Yang J, Han R, Niu Q, et al. Occurrence of four Anaplasma species with veterinary and public health significance in sheep, northwestern China. Ticks Tick Borne Dis. 2018;9(1):82–85. https://doi:10.1016/j.ttbdis.2....
 
12.
Fernandes SJ, Matos CA, Freschi CR, et al. Diversity of Anaplasma species in cattle in Mozambique. Ticks Tick Borne Dis. 2019;10(3):651–664. https://doi:10.1016/j.ttbdis.2....
 
13.
World Organisation for Animal Health (OIE). Manual of Diagnostic Tests and Vaccines for Terrestrial Animals. 13th ed. 2024. Chapter 3.4.1.: Bovine Anaplasmosis. https://www.woah.org/fileadmin.... (access: 2025.08.12).
 
14.
Torina A, Vicente J, Alongi A, et al. Observed prevalence of tick-borne pathogens in domestic animals in Sicily, Italy during 2003–2005. Zoonoses Public Health. 2007;54(1):8–15. https://doi:10.1111/j.1863-237....
 
15.
Shabana II, Alhadlag NM, Zaraket H. Diagnostic tools of caprine and ovine anaplasmosis: a direct comparative study. BMC Vet Res. 2018;14(1):165. https://doi:10.1186/s12917-018....
 
16.
Rubel W, Schoneberg C, Wolf A, et al. Seroprevalence and Risk Factors of Anaplasma spp. in German Small Ruminant Flocks. Animals (Basel). 2021;11(10):2793. https://doi:10.3390/ani1110279....
 
17.
Voyiatzaki C, Papailia SI, Venetikou MS, et al. Climate Changes Exacerbate the Spread of Ixodes ricinus and the Occurrence of Lyme Borreliosis and Tick-Borne Encephalitis in Europe—How Climate Models Are Used as a Risk Assessment Approach for Tick-Borne Diseases. Int J Environ Res Public Health. 2022;19(11):6516. https://doi.org/10.3390/ijerph....
 
18.
Novakova M, Vichova B, Majlathova V, et al. First case of human granulocytic anaplasmosis from Slovakia. Ann Agric Environ Med. 2010;17(1):173–175.
 
19.
Kazimírová M, Hamšíková Z, Špitalská E, et al. Diverse tick-borne microorganisms identified in free-living ungulates in Slovakia. Parasit Vectors. 2018;11(1):495. https://doi:10.1186/s13071-018....
 
20.
Matysiak A, Dudko P, Dudek K, et al. The occurrence of pathogens in Rhipicephalus microplus ticks from cattle in Madagascar. Vet Med – Czech. 2016;61(9):516–523. https://doi:10.17221/59/2016-V....
 
21.
Seo MG, Ouh IO, Lee SH, et al. Serological Detection of Antibodies against Anaplasma spp. in Cattle Reared in the Gyeongsangbuk-do, Korea. Korean J Parasitol. 2018;56(3):287–290. https://doi:10.3347/kjp.2018.5....
 
22.
Tavares-Marques Lucinda M, Núñez Cristina, et al. Evidencia serológica de Anaplasma spp. en pequeños rumiantes de Venezuela utilizando MSP5 recombinante en ensayos inmunoenzimáticos. Rev cient. (Maracaibo) 2010;20(5):506–511. http://ve.scielo.org/scielo.ph.... (access: 2025.08.12).
 
23.
Stuen S, Bergström K. Serological investigation of granulocytic Ehrlichia infection in sheep in Norway. Acta Vet Scand. 2001;42(3):331–338. https.//doi:10.1186/1751-0147-42-331.
 
24.
Peng Y, Lu C, Yan Y, et al. The first detection of Anaplasma capra, an emerging zoonotic Anaplasma sp., in erythrocytes. Emerg Microbes Infect. 2021;10(1):226–234. https://doi:10.1080/22221751.2....
 
25.
Monyama MC, Ramatla T, Khosa B, et al. Anaplasma Phagocytophilum, a Zoonotic Vector-Borne Bacterial Species in Rodents and Its Associated Tick Vector: Systematic Review. Vet Med Sci. 2025;11(3):e70387. https://doi:10.1002/vms3.70387.
 
26.
Gong L, Diao L, Lv T, et al. A comprehensive review of tick-borne disease epidemiology, clinical manifestations, pathogenesis, and prevention. Anim Zoonoses. Published online May 21, 2025. https://doi.org/10.1016/j.azn.....
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top