Effect of electromagnetic waves on human reproduction
More details
Hide details
Diagnostic Techniques Unit, Medical University of Lublin, Poland
Institute of Electrical Engineering and Electrotechnologies, University of Technology, Lublin, Poland
Institute of Rural Health, Lublin, Poland
Corresponding author
Artur Wdowiak   

Diagnostic Techniques Unit, Medical University of Lublin, Poland
Ann Agric Environ Med. 2017;24(1):13-18
Electromagnetic radiation (EMR) emitting from the natural environment, as well as from the use of industrial and everyday appliances, constantly influence the human body. The effect of this type of energy on living tissues may exert various effects on their functioning, although the mechanisms conditioning this phenomenon have not been fully explained. It may be expected that the interactions between electromagnetic radiation and the living organism would depend on the amount and parameters of the transmitted energy and type of tissue exposed. Electromagnetic waves exert an influence on human reproduction by affecting the male and female reproductive systems, the developing embryo, and subsequently, the foetus. Knowledge concerning this problem is still being expanded; however, all the conditionings of human reproduction still remain unknown. The study presents the current state of knowledge concerning the problem, based on the latest scientific reports.
Zmyślony M, Politański P. Zagrożenia zdrowia i ochrona zdrowia pracujących w narażeniu na pola i promieniowanie elektromagnetyczne 0–300 GHz. Oficyna Wydawnicza Instytutu Medycyny Pracy im. prof. J. Nofera, 2009; 7–50 (in Polish).
Sheppard AR, Swicord ML, Balzano Q. Quantitative evaluations of mechanisms of radiofre- quency interactions with biological molecules and processes. Health Phys. 2008; 95(4): 365–96.
Challis LJ. Mechanisms for interaction between RF fields and biological tissue. Bioelectromagnetics. 2005; Suppl 7: 98–106.
Kotnik T, Miklavcic D. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys J. 2006; 90(2): 480–91.
Seger R, Friedman J, Kraus S, Hauptman Y, Schiff Y. Mechanism of short-term ERK activation by electromagnetic fields at mobile phone frequencies. Biochem J. 2007; 405: 559.
Porcelli M, Cacciapuoti G, Fusco S, Massa R, d’Ambrosio G, Bertoldo C, De Rosa M, Zappia V.Non-thermal effects of microwaves on proteins: thermophilic enzymes as model system. FEBS Lett. 1997; 402(2–3): 102–6.
De Pomerai DI, Smith B, Dawe A, North K, Smith T, Archer DB, Duce IR, Jones D, Candido EP. Microwave radiation can alter protein conformation without bulk heating. FEBS Lett. 2003; 543(1–3): 93–7.
Mancinelli F, Caraglia M, Abbruzzese A, d’Ambrosio G, Massa R, Bismuto E. Non-thermal effects of electromagnetic fields at mobile phone frequency on the refolding of an intracellular protein: myogl. J Cell Biochem. 2004; 93(1): 188–96.
Agarwal A, Desai NR, Makker K, et al. Effects of radiofrequency electromagnetic waves (RF-EMW) from cellular phones on human ejaculated semen: an in vitro pilot study. Fertil Steril. 2009; 92(4): 1318–25.
Makker K, Varghese A, Desai NR, Mouradi R, Agarwal A. Cell phones: modern man’s nemesis? Reprod Biomed Online. 2009; 18(1): 148–57.
Szkodziak P, Wozniak S, Czuczwar P, Wozniakowska E, Milart P, Mroczkowski A, Paszkowski T. Infertility in the light of new scientific reports – focus on male factor. Ann Agric Environ Med. 2016; 23(2): 227–30.
Bojar I, Witczak M, Wdowiak A. Biological and environmental conditionings for a sperm DNA fragmentation. Ann Agric Environ Med. 2013; 20(4): 865–8.
Lishko PV, Kirichok Y, Ren D, Navarro B, Chung JJ, Clapham DE. The control of male fertility by spermatozoan ion channels. Annu Rev Physiol. 2012.
Darszon A, Nishigaki T, Beltran C, Treviño CL. Calcium channels in the development, maturation, and function of spermatozoa. Physiol Rev. 2011; 91(4): 1305–55.
DeCoursey TE. Voltage-gated proton channels: molecular biology, physiology, and pathophysiology of the H(V) family. Physiol Rev. 2013; 93(2): 599–652.
Okamura Y, Fujiwara Y, Sakata S. Gating mechanisms of voltage-gated proton channels. Annu Rev Biochem. 2015; 84: 685–709.
Walleczek J. Electromagnetic field effects on cells of the immune system: the role of calcium signaling. FASEB J. 1992 Oct; 6(13): 3177–3185.
Wolska A, Marzec S, Owczarek G. Zasady higienicznej oceny promieniowania optycznego, CIOP Warszawa 2001 (in Polish).
Mazurek PA, Wac-Włodarczyk A, Filipek P, Serwin S, Błażejewska A. Ocena przewodzonych zagrożeń elektromagnetycznych prototypowej spawarki inwertorowej, Przegląd Elektrotechniczny 2012; 12b; 198–200 (in Polish).
Bonde JP. The risk of male subfecundity attributable to welding of metals. Studies of semen quality, infertility, fertility, adverse pregnancy outcome and childhood malignancy. Int J Androl. 1993; 16 Suppl 1: 1–29.
Ye LL, Suo YS, Cao WL, Chen M. Radar radiation damages sperm quality. Zhonghua Nan Ke Xue. 2007; 13(9): 801–3.
Ding XP, Yan SW, Zhang N, Tang J, Lu HO, Wang XL, Tang Y. A cross-sectional study on nonionizing radiation to male fertility. Zhonghua Liu Xing Bing Xue Za Zhi. 2004; 25(1): 40–3.
Weyandt TB, Schrader SM, Turner TW, Simon SD. Semen analysis of military personnel associated with military duty assignments. Reprod Toxicol. 1996; 10(6): 521–8.
Schrader SM, Langford RE, Turner TW, Breitenstein MJ, Clark JC, Jenkins BL, Lundy DO, Simon SD, Weyandt TB. Reproductive function in relation to duty assignments among military personnel. Reprod Toxicol. 1998; 12(4): 465–8.
Wdowiak A, Wdowiak L, Wiktor H. Evaluation of the effect of using mobile phones on male fertility. Ann Agric Environ Med. 2007; 14(1): 169–72.
De Iuliis GN, Newey RJ, King BV, Aitken RJ. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One 2009; 4(7): e644622.
Mazurek PA, Kisiel K, Tomczyk P, Wiak M. Analiza emisji elektromagnetycznej w środowisku przemysłowym na przykładzie Zakładów Azotowych Puławy S.A. Przegląd Elektrotechniczny 2014; 12(90); 240–243 (in Polish).
Zmyślony M. Mechanizmy biologiczne i efekty zdrowotne PEM w świetle wymagań raportu oddziaływaniu obiektu na środowisko. Med Pr. 2007; 58(1): 27–36 (in Polish).
Fejes I, Zavaczki Z, Szollosi J, et al. Is there a relationship between cell phone use and semen quality? Arch Androl. 2005; 51(5): 385–93.
Liu C, Duan W, Xu S, Chen C, He M, Zhang L, Yu Z, Zhou Z. Exposure to 1800 MHz radiofrequency electromagnetic radiation induces oxidative DNA base damage in a mouse spermatocyte-derived cell line. Toxicol Lett. 2013; 218(1): 2–9.
Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl. 2005; 28(3):171–9.
Izmest’eva OS, Parshkov EM, Zhavoronkov LP, Izmest’ev VI, Litovkina LV, Voron’ko IaV. Effects of electromagnetic field of thermal intensity on the hypophysis-thyroid unit of the neuroendocrine system. Radiats Biol Radioecol. 2003; 43(5): 597–600.
Falahati SA, Anvari M, Khalili MA. Effect of combined magnetic fields on human sperm parameters. Iran. J. Radiat. Res. 2011; 9(3): 195–200.
Łopucki M, Jakiel G, Bakalczuk S, Pietruszewski M, Kankofer J. Influence of alternating magnetic field with magnetic induction 0.5mT and frequency 50Hz on human spermatozoa in-vitro. Int J Androl. 2005; 28(suppl. 1): 106, Abstr. of the 8th International Congress of Andrology. Seoul, 12–16 June 2005.
Li DK, Yan B, Li Z, Gao E, Miao M, Gong D, Weng X, Ferber JR, Yuan W. Exposure to magnetic fields and the risk of poor sperm quality. Reprod Toxicol. 2010; 29(1): 86–92.
Tateno H, Iijima S, Nakanishi Y, Kamiguchi Y, Asaka A. No induction of chromosome aberrations in human spermatozoa exposed to extremely low frequency electromagnetic fields. Mutat Res. 1998; 414(1–3): 31–5.
Formicki K, Szulc J, Tański A, Korzelecka-Orkisz A, Witkowski A, Kwiatkowski P. The effect of static magnetic field on Danude huchen,Hucho hucho(L.)sperm motility parameters. Arch Pol Fish. 2013; 21: 189–197.
Gul A, Celebi H, Uğraş S. The effects of microwave emitted by cellular phones on ovarian follicles in rats. Arch Gynecol Obstet. 2009; 280(5): 729–33.
Roshangar L, Hamdi BA, Khaki AA, Rad JS, Soleimani-Rad S. Effect of low-frequency electromagnetic field exposure on oocyte differentiation and follicular development. Adv Biomed Res. 2014; 3: 76.
Mailhes JB, Young D, Marino AA, London SN. Electromagnetic fields enhance chemically-induced hyperploidy in mammalian oocytes. Mutagenesis. 1997; 12(5): 347–51.
Panagopoulos DJ, Chavdoula ED, Nezis IP, Margaritis LH. Cell death induced by GSM 900-MHz and DCS 1800-MHz mobile telephony radiation. Mutat Res. 2007; 626(1–2): 69–78.
Sagioglou NE, Manta AK, Giannarakis IK, Skouroliakou AS, Margaritis LH. Apoptotic cell death during Drosophila oogenesis is differentially increased by electromagnetic radiation depending on modulation, intensity and duration of exposure. Electromagn Biol Med. 2015: 1–14.
Fedorov AI, Weĭsman NIa, Nemova EF, Mamrashev AA, Nikolaev NA. Terahertz radiation influence on number and development dynamics of offspring F1 of fruit fly females under stress. Biofizika. 2013; 58(6): 1043–50.
Guney M, Ozguner F, Oral B, Karahan N, Mungan T. 900 MHz radiofrequency-induced histopathologic changes and oxidative stress in rat endometrium: protection by vitamins E and C. Toxicol Ind Health. 2007; 23(7): 411–20.
Iaremchuk MM, Dyka MV, Sanahurs’kyĭ DI. The activity of prooxidant-antioxidant system in loach embryos under the action of microwave radiation. Ukr Biochem J. 2014; 86(5): 142–50.
Wdowiak A, Wdowiak A. Comparing antioxidant enzyme levels in follicular fluid in ICSI-treated patients. Gynecol Obstet Fertil. 2015; 43(7–8): 515–21.
Borhani N., Rajaei F, Salehi Z, Javadi A. Analysis of DNA fragmentation in mouse embryos exposed to an extremely low-frequency electromagnetic field. Electromagn Biol Med. 2011; 30(4): 246–52.
Delgado JM, Leal J, Monteagudo JL, Gracia MG. Embryological changes induced by weak, extremely low frequency electromagnetic fields. Jurn Anat. 1982; 134(Pt 3): 533–51.
Di Carlo AL, Mullins JM, Litovitz TA. Thresholds for electromagnetic field-induced hypoxia protection: evidence for a primary electric field effect. Bioelectrochemistry. 2000; 52(1): 9–16.
Lim JH, McCullen SD, Piedrahita JA, Loboa EG, Olby NJ. Alternating current electric fields of varying frequencies: effects on proliferation and differentiation of porcine neural progenitor cells. Cell Reprogram. 2013; 15(5): 405–12.
Liu C, Yu J, Yang Y, Tang X, Zhao D, Zhao W, Wu H. Effect of 1 mT sinusoidal electromagnetic fields on proliferation and osteogenic differentiation of rat bone marrow mesenchymal stromal cells. Bioelectromagnetics. 2013; 34(6): 453–64.
Shah SG, Farrow A. Systematic literature review of adverse reproductive outcomes associated with physiotherapists occupational exposures to non-ionising radiation. J Occup Health. 2014; 56(5): 323–31.
Nazıroğlu M Yüksel M, Köse SA Özkaya MO. Recent reports of Wi-Fi and mobile phone-induced radiation on oxidative stress and reproductive signaling pathways in females and males. J Membr Biol. 2013; 246(12): 869–75.
Wdowiak A, Lewicka M, Sulima M, Kais A, Stec M, Skrzypczak M, Sawicki K, Kapka-Skrzypczak L, Praca przy komputerze i korzystanie z telefonu komórkowego a dobrostan noworodka. Probl Hig Epidemiol 2012; 93(4): 698–701 (in Polish).
Łopucki M, Łańcut M, Rogowska W, Czerny K, Jedrych B, Pietruszewski S, Kornarzyński K, Kotarski J. Evaluation of the morphology of the human placental cotyledon following dual in vitro perfusion in variable magnetic field. Ginekol Pol. 2003; 74(10): 1187–93.
Łopucki M, Rogowska W, Pietruszewski S, Kornarzyński K, Kowalski P, Kotarski J. Oxygen transfer and consumption in human placenta exposed to variable magnetic fields in vitro. Ginekol Pol. 2004; 75(3): 177–86.
Łopucki M, Czekierdowski A, Rogowska W, Kotarski J. The effect of oscillating low intensity magnetic field on the Na+, K+, Ca++, and Mg++ concentrations in the maternal and fetal circulation of the dually perfused human placental cotyledon. Bioelectromagnetics. 2004; 25(5): 329–37.
Journals System - logo
Scroll to top