RESEARCH PAPER
Toxoplasma gondii infection in selected species of free-living animals in Poland
More details
Hide details
1
National Veterinary Research Institute, Pulawy, Poland
2
Institute of Rural Health, Lublin, Poland
Corresponding author
Jacek Sroka
National Veterinary Research Institute, Partyzanów Av. 57, 24-100, Puławy, Poland
Ann Agric Environ Med. 2019;26(4):656-660
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Free-living animals can play an important role as a reservoir of Toxoplasma gondi;, however, data concerning this issue in Poland are still limited.The aim of study was to assess the occurrence of T. gondii infection by using molecular methods in free-living animals in selected regions of Poland.
Material and methods:
Tissues samples of 396 animals (foxes, muskrats, birds, martens, badgers, polecats, raccoons, minks, raccoon dogs, otters, small rodents and insectivores, and grass snakes were collected from various regions of Poland. After samples digestion, DNA was isolated using QIAmp DNA Mini Kit (Qiagen). DNA extraction from small rodents and insectivores samples was performed without digestion. Next, nested PCR (B1 gene) and, for a part of nested PCR positive amplicons, RFLP PCR, were performed according to the method by Grigg and Boothroyd (2001). The other part of nested PCR positive DNA isolates were genotyped using 5 genetic markers: SAG1, SAG2 (5’- and 3’), SAG3, BTUB and GRA6, based on the method by Dubey et al. (2006). These PCR products were sequenced and compared with the NCBI database using Blast.
Results:
In total, in 50 of the 396 examined animals DNA of T. gondii was detected (12.6%). The highest percentages of positive results in PCR was obtained in martens (40.9%) and badgers (38.5%), lower in birds (27.3%) and the lowest in foxes (7.4%). The RFLP and multilocus PCR analysis showed the dominance of T. gondii clonal type II (or II/III).
Conclusions:
The results of this study indicate the frequent T. gondii infection among free-living animals in Poland, especially martens and badgers, which may indirectly indicate that these animals contribute to the spread of the parasite in the sylvatic environment in Poland. The genotyping analysis showed the dominance of T. gondii clonal type II (or II/III).
REFERENCES (41)
1.
Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: From animals to humans. Int J Parasitol. 2000; 30: 1217–1258.
2.
Torgerson PR, Devleesschauwer B, Praet N, Speybroeck N, Willingham AL, Kasuga F, Rokni MB, Zhou XN, Fèvre EM, Sripa B, Gargouri N, Fürst T, Budke CM, Carabin H, Kirk MD, Angulo FJ, Havelaar A, de Silva N. World Health Organization estimates of the global and regional disease burden of 11 foodborne parasitic diseases, 2010: a data synthesis PLoS Med. 2015; 12, Article e1001920.
3.
FAO, WHO, 2014. Multicriteria-based ranking for risk management of food-borne parasites. Microbiol Risk Assess Series. 23, 287.
4.
Bouwknegt M, Devleesschauwer B, Graham H, Robertson L, van der Giessen JWB. The Euro-FBP Workshop Participants, 2018. Prioritisation of food-borne parasites in Europe, 2016. Eurosurveillance. 2018; 23: 17–00161.
5.
Shwab EK, Zhu XQ, Majumdar D, Pena HF, Gennari SM, Dubey JP, Su C. Geographical patterns of Toxoplasma gondii genetic diversity revealed by multilocus PCR-RFLP genotyping. Parasitology. 2014; 141(4): 453–461. doi.org/10.1017/S0031182013001844.
6.
Turčeková Ľ, Antolová D, Reiterová K, Spišák F. Occurrence and genetic characterization of Toxoplasma gondii in naturally infected pigs. Acta Parasitol. 2013; 58: 361–366.
7.
Verin R, Mugnaini L, Nardoni S, Papini R, Ariti G, Poli A, Mancianti F. Serologic, molecular and pathologic survey of Toxoplasma gondii infection in free ranging red foxes (Vulpes vulpes) in Central Italy. J Wildl Dis. 2013; 49: 545–551.
8.
Bacci C, Vismarra A, Mangia C, Bonardi S, Bruini I, Genchi M, Kramer L, Brindani F. Detection of Toxoplasma gondii in free-range, organic pigs in Italy using serological and molecular methods. Int J Food Microbiol. 2015; 202: 54–56.
9.
Battisti E, Zanet S, Trisciuoglio A, Bruno S, Ferroglio E. Circulating genotypes of Toxoplasma gondii in Northwestern Italy. Vet Parasitol. 2018; 253: 43–47.
10.
Berger-Schoch AE, Herrmann DC, Schares G, Müller N, Bernet D, Gottstein B, Frey CF. Prevalence and genotypes of Toxoplasma gondii in feline faeces (oocysts) and meat from sheep, cattle and pigs in Switzerland. Vet Parasitol. 2011; 177: 290–297.
11.
Karakavuk M, Aldemir D, Mercier A, Atalay Şahar E, Can H, Murat J-B, Döndüren Ö, Can Ş, Özdemir HG, Değirmenci Döşkaya A, Pektaş B, Dardé ML, Gürüz AY, Döşkaya M. Prevalence of toxoplasmosis and genetic characterization of Toxoplasma gondii strains isolated in wild birds of prey and their relation with previously isolated strains from Turkey. PLoS ONE. 2018; 13(4): e0196159.
https://doi.org/10.1371/journa....
12.
Dubey JP, Weigel RM, Siegel AM, Thulliez P, Kitron UD, Mitchell MA, Mannelli A, Mateus-Pinilla NE, Shen SK, Kwok OCH. Todd KS. Sources and reservoirs of Toxoplasma gondii infection on 47 swine farms in Illinois. J Parasitol. 1995; 81: 723–729.
13.
Duscher GG, Leschnik M, Fuehrer HP, Joachim A. Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria. Int J Parasitol Parasites Wildl. 2015; 4: 88–96. doi: 10.1016/j.ijppaw.2014.12.001 PMID: 25830102.
14.
Karamon J, Kochanowski M, Sroka J, Cencek T, Różycki M, Chmurzyńska E, Bilska-Zając E. The prevalence of Echinococcus multilocularis in red foxes in Poland – current results (2009–2013). Parasitol Res. 2014; 113: 317–22.
https://doi:10.1007/s00436-013....
15.
Dubey JP, Felix TA, Kwok OC. Serological and parasitological prevalence of Toxoplasma gondii in wild birds from Colorado. J Parasitol. 2010; 96: 937–939,
https://doi.org/10.1645/GE-250....
16.
Dubey JP, Beattie CP. Toxoplasmosis of Animals and Man. Boca Raton, CRC Press Inc, 1988.
17.
Grigg ME, Boothroyd JC. Rapid identification of virulent type I strains of the protozoan pathogen Toxoplasma gondii by PCR restriction fragment length polymorphism analysis at the B1 gene. J Clin Microbiol. 2001; 39: 398–400.
18.
Dubey JP, Patitucci AN, Su C, Sundar N, Kwok OC, Shen SK.: Characterization of Toxoplasma gondii isolates in free-range chickens from Chile, South America. Vet Parasitol. 2006; 140: 76–82.
19.
Nowakowska D1, Colón I, Remington JS, Grigg M, Golab E, Wilczynski J, Sibley LD. Genotyping of Toxoplasma gondii by multiplex PCR and peptide-based serological testing of samples from infants in Poland diagnosed with congenital toxoplasmosis. J Clin Microbiol. 2006; 44: 1382–1389.
20.
Sroka J, Bilska-Zając E, Wójcik-Fatla A, Zając V, Dutkiewicz J, Karamon J, Piotrowska W, Cencek T. Detection and molecular characteristics of Toxoplasma gondii DNA in retail raw meat products in Poland. Foodborne Pathog Dis. 2019; 16: 195–204; DOI: 10.1089/fpd.2018.2537.
21.
Sroka J, Kusyk P, Bilska-Zając E, Karamon J, Dutkiewicz J, Wójcik-Fatla A, Zając V, Stojecki K, Różycki M, Cencek T. Seroprevalence of Toxoplasma gondii infection in goats from the south-west region of Poland and the detection of T. gondii DNA in goat milk. Folia Parasitol. 2017; 64: 023. doi: 10.14411/fp.2017.023.
22.
Sroka J, Wójcik-Fatla A, Szymańska J, Dutkiewicz J, Zając V, Zwoliński J. The occurrence of Toxoplasma gondii in people and animals from rural environment of Lublin region – estimate of potential role of water as a source of infection. Ann Agric Environ Med. 2010; 17: 125–132.
23.
Sroka J, Wójcik-Fatla A, Zwoliński J, Zając V, Sawczuk M, Dutkiewicz J. Preliminary study on the occurrence of Toxoplasma gondii in Ixodes ricinus ticks from north-western Poland with the use of PCR. Ann Agric Environ Med. 2008; 15: 333–338.
24.
Lass A, Pietkiewicz H, Szostakowska B, Myjak P. The first detection of Toxoplasma gondii DNA in environmental fruits and vegetables samples. Eur J Clin Microbiol Infect Dis. 2012; 31: 1101–1108.
25.
Literák I, Hejlíček K, Nezval J, Folk Č. Incidence of Toxoplasma gondii in populations of wild birds in the Czech Republic, Avian Pathol. 1992; 21: 659–665. DOI:10.1080/03079459208418887.
26.
Lindsay DS, Smith PC, Hoerr FJ, Blagburn BL. Prevalence of encysted Toxoplasma gondii in raptors from Alabama. J Parasitol. 1993; 79: 870–873.
27.
Turčeková Ľ, Hurníková Z, Spišák F, Miterpáková M, Chovancová B. Toxoplasma gondii in protected wildlife in the Tatra National Park (TANAP), Slovakia. Ann Agric Environ Med. 2014; 21: 235–238.
https://doi.org/10.5604/1232-1... PMID: 24959767.
28.
Hejlícek K, Literák I, Nezval J. Toxoplasmosis in wild mammals from the Czech Republic. J. Wildl. Dis. 1997; 33: 480–485.
29.
Waindok P, Özbakış-Beceriklisoy G, Janecek-Erfurth E, Springer A, Pfeffer M, Leschnik M, Strube Ch. Parasites in brains of wild rodents (Arvicolinae and Murinae) in the city of Leipzig, Germany, Int J Parasitol Parasites Wildl. 2019, 10, 211–217.
https://doi.org/10.1016/j.ijpp....
30.
Nezval J, Literák I. Toxoplasma gondii in muskrat (Ondatra zibethicus). Vet Med (Praha). 1994; 39: 743–6.
31.
Krücken J, Blümke J, Maaz D, Demeler J, Ramünke S, Antolová D, Schaper R, von Samson-Himmelstjerna G. Small rodents as paratenic or intermediate hosts of carnivore parasites in Berlin, Germany. PLoS ONE. 2017; 12: e0172829. doi:10.1371/journal.pone.0172829.
32.
Sutor A, Schwarz S, Conraths F. The biological potential of the raccoon dog (Nyctereutes procyonoides, Gray 1834) as an invasive species in Europe – new risks for disease spread? Acta Theriol. 2014; 59: 49–59.
33.
Bartoszewicz M, Okarma H, Zalewski A, Szczęsna J. Ecology of raccoon (Procyon lotor) from western Poland. Ann Zool Fennici. 2008; 45: 291–298.
34.
Karamon J, Kochanowski M, Cencek T, Bartoszewicz M, Kusyk P. Gastrointestinal helminths of raccoons (Procyon lotor) in western Poland (Lubuskie province) – with particular regard to Baylisascaris procyonis. Bull Vet Inst Pulawy. 2014; 58: 547–552. doi: 10.2478/bvip-2014-0084.
35.
Kornacka A, Cybulska A, Popiołek M, Kuśmierek N, Moskwa B. Survey of Toxoplasma gondii and Neospora caninum in raccoons (Procyon lotor) from the Czech Republic, Germany and Poland. Vet Parasitol. 2018, 262: 47–50.
https://doi.org/10.1016/j.vetp....
36.
Burrells A, Bartley PM, Zimmer IA, Roy S, Kitchener AC, Meredith A, Wright SE, Innes EA, Katzer F. Evidence of the three main clonal Toxoplasma gondii lineages from wild mammalian carnivores in the UK. Parasitology. 2013; 140: 1768–1776. doi:10.1017/S0031182013001169.
37.
Hůrková L, Modrý D. PCR detection of Neospora caninum, Toxoplasma gondii and Encephalitozoon cuniculi in brains of wild carnivores. Vet Parasitol. 2006; 137: 150–4.
38.
De Craeye S, Speybroeck N, Ajzenberg D, Darde M L, Collinet F, Tavernier P, Van Gucht S, Dorny P, Dierick K. Toxoplasma gondii and Neospora caninum in wildlife: common parasites in Belgian foxes and Cervidae? Vet Parasitol. 2011; 178: 64–69. doi: 10.1016/j.vetpar.2010.12.016.
39.
Herrmann DC, Maksimov P, Maksimov A, Sutor A, Schwarz S, Jaschke W, Schliephake A, Denzin N, Conraths FJ, Schares G. Toxoplasma gondii in foxes and rodents from the German Federal States of Brandenburg and Saxony-Anhalt: seroprevalence and genotypes. Vet Parasitol. 2012; 185: 78–85. doi:10.1016/j.vetpar.2011.10.030.
40.
Aubert D, Ajzenberg D, Richomme C, Gilot-Fromont E, Terrier M E, de Gevigney C, Game Y, Maillard D, Gibert P, Darde M L, Villena I. Molecular and biological characteristics of Toxoplasma gondii isolates from wildlife in France. Vet Parasitol. 2010; 171, 346–349. doi: 10.1016/j.vetpar.2010.03.033.
41.
Barros M, Cabezón O, Dubey JP, Almería S, Ribas MP, Escobar LE, Ramos B, Medina-Vogel G. Toxoplasma gondii infection in wild mustelids and cats across an urban-rural gradient. PLoS One. 2018;13(6): e0199085. doi: 10.1371/journal.pone.0199085.