Review of methods used for identification of biothreat agents in environmental protection and human health aspects

Tomasz Mirski 1  ,  
Janusz Kocik 2,  
Biological Threat Identification and Countermeasure Centre of the Military Institute of Hygiene and Epidemiology, Puławy, Poland
Military Institute of Hygiene and Epidemiology, Department of Epidemiology, Warsaw, Poland
Faculty of Chemistry and New Technologies, Military Uniwersity of Technology, Warsaw, Poland
Ann Agric Environ Med 2014;21(2):224–234
Modern threats of bioterrorism force the need to develop methods for rapid and accurate dentification of dangerous biological agents. Currently, there are many types of methods used in this field of studies that are based on immunological or genetic techniques, or constitute a combination of both methods (immuno-genetic). There are also methods that have been developed on the basis of physical and chemical properties of the analytes. Each group of these analytical assays can be further divided into conventional methods (e.g. simple antigen-antibody reactions, classical PCR, eal-time PCR), and modern technologies (e.g. microarray technology, aptamers, phosphors, etc.). Nanodiagnostics constitute another group of methods that utilize the objects at a nanoscale (below 100 nm). There are also integrated and automated diagnostic systems, which combine different ethods and allow simultaneous sampling, extraction of genetic material and detection and identification of the analyte using genetic, as well as immunological techniques.
Tomasz Mirski   
Biological Threat Identification and Countermeasure Centre of the Military Institute of Hygiene and Epidemiology, Puławy, Poland
1. Kellogg M. Detection of biological agents used for terrorism: are we ready? Clin Chem. 2010; 56(1): 10–15.
2. Tierno PM. Protect yourself against bioterrorism. Pocket Books: New York, 2002.
3. Bartoszcze M. Methods of biological weapon threats detection. Przegl Epidemiol. 2003; 57: 369–376.
4. Lim DV, Simpson JM, Kearns EA, Kramer MF. Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev. 2005; 18 (4): 583–607.
5. Bell CA, Uhl JR, Hadfield TL, David JC, Meyer RF, Smith TF, et al. Detection of Bacillus anthracis DNA by LightCycler PCR. J Clin Microbiol. 2002; 40: 2897–2902.
6. Fode-Vaughan KA, Maki JS, Benson JA, Collins MLP. Direct PCR detection of Escherichia coli O157:H7. Lett Appl Microbiol. 2003; 37: 239–243.
7. Ibekwe AM, Grieve CM. Detection and quantification of Escherichia coli O157:H7 in environmental samples by real-time PCR. J Appl Microbiol. 2003; 94: 421–431.
8. Garcia ME, Blanco JL, Caballero J, Gargallo-Viola D. Anticoagulants interfere with PCR used to diagnose invasive aspergillosis. J Clin Microbiol. 2002; 40: 1567–1568.
9. Morata P, Queipo-Ortuno MI, De Dios Colmenero J. Strategy for optimizing DNA amplification in a peripheral blood PCR assay used for diagnosis of human brucellosis. J Clin Microbiol. 1998; 36: 2443–2446.
10. Peruski AH, Johnson LH, Peruski LF. Rapid and sensitive detection of biological warfare agents using time-resolved fluorescence assays. J Immunol Methods. 2002; 263: 35–41.
11. Vignali DA. Multiplexed particle-based flow cytometric assays. J Immunol Methods. 2000; 243: 243–255.
12. Hindson BJ, Brown SB, Marshall GD, McBride MT, Makarewicz AJ, Gutierrez DM et al. Development of an automated sample preparation module for environmental monitoring of biowarfare agents. Anal Chem. 2004; 76: 3492–3497.
13. Biagini RE, Sammons DL, Smith JP, MacKenzie BA, Striley CAF, Semenova V, et al. Comparison of a multiplexed fluorescent covalent microsphere immunoassay and an enzyme-linked immunosorbent assay for measurement of human immunoglobulin G antibodies to anthrax toxins. Clin Diagn Lab Immunol. 2004; 11: 50–55.
14. Hecht A, Kinnunen P, McNaughton B, Kopelman R. Towards an asynchronous magnetic bead rotation method for immunological assays. NSTI-Nanotech. 2010; 3: 7–9.
15. Shelton DR, Karns JS. Quantitative detection of Escherichia coli O157 in surface waters by using immunomagnetic electrochemiluminescence. Appl Environ Microbiol. 2001; 67: 2908–2915.
16. Yu H. Enhancing immunoelectrochemiluminescence (IECL) for sensitive bacterial detection. J Immunol Methods. 1996; 192: 63–71.
17. Yu H, Bruno JG. Immunomagnetic-electrochemiluminescent detection of Escherichia coli O157 and Salmonella typhimurium in foods and environmental water samples. Appl Environ Microbiol. 1996; 62: 587–592.
18. Gatto-Menking DL, Yu H, Bruno JG, Goode MT, Miller M, Zulich AW. Sensitive detection of biotoxoids and bacterial spores using an immunomagnetic electrochemiluminescence sensor. Biosens Bioelectron. 1995; 10: 501–507.
19. Emanuel PA, Dang J, Gebhardt JS, Aldrich J, Garber EAE, Kulaga H, et al. Recombinant antibodies: a new reagent for biological agent detection. Biosens Bioelectron. 2000; 14: 751–759.
20. Lichlyter DJ, Grant SA, Soykan O. Development of a novel FRET immunosensor technique. Biosens Bioelectron. 2003; 19: 219–226.
21. Petrenko VA, Sorokulova IB. Detection of biological threats. A challenge for directed molecular evolution. J Microbiol Methods. 2004; 58: 147–168.
22. Zhou B, Wirsching P, Janda KD. Human antibodies against spores of the genus Bacillus: a model study for detection of and protection against anthrax and the bioterrorist threat. Proc Natl Acad Sci. 2002; 99: 5241–5246.
23. Hayhurst A, Happe S, Mabry R, Koch Z, Iverson BL, Georgiou G. Isolation and expression of recombinant antibody fragments to the biological warfare pathogen Brucella melitensis. J Immunol Methods 2003; 276: 185–196.
24. Schmaljohn C, Cui Y, Kerby S, Pennock D, Spik K. Production and characterization of human monoclonal antibody Fab fragments to Vaccinia virus from a phage-display combinatorial library. Virology 1999; 258: 189–200.
25. Deng XK, Nesbit LA, Morrow KJ. Recombinant single-chain variable fragment antibodies drected against Clostridium difficile toxin B produced by use of an optimized phage display system. Clin Diagn Lab Immunol. 2003; 10: 587–595.
26. Kirby R, Cho EJ, Gehrkem B, Bayer T, Park YS, Neikirk DP, et al. Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem. 2004; 76: 4066–4075.
27. Bruno JG, Kiel JL. In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron. 1999; 14: 457–464.
28. Hesselberth JR, Robertson MP, Knudsen SM, Ellington AD. Simultaneous detection of diverse analytes with an aptazyme ligase array. Anal Biochem. 2003; 312: 106–112.
29. Smith D, Collins BD, Heil J, Koch TH. Sensitivity and specificity of photoaptamer probes. Mol Cell Proteomics 2003; 2: 11–18.
30. Khan AS, Thompson R, Cao C, Valdes JJ. Selection and characterization of peptide memitopes binding to ricin. Biotechnol Lett. 2003; 25: 1671–1675.
31. Brigati J, Williams DD, Sorokulova IB, Nanduri V, Chen I-H, Turnbough CL et al. Diagnostic probes for Bacillus anthracis spores selected from a landscape phage library. Clin Chem. 2004; 50: 1899–1906.
32. Turnbough CL. Discovery of phage display peptide ligands for species-specific detection of Bacillus spores. J Microbiol Methods 2003; 53: 263–271.
33. Williams DD, Benedek O, Turnbough CL. Species-specific peptide ligands for the detection of Bacillus anthracis spores. Appl Environ Microbiol. 2003; 69: 6288–6293.
34. Mason HY, Lloyd C, Dice M, Sinclair R, Ellis W, Powers L. Taxonomic identification of microorganisms by capture and intrinsic fluorescence detection. Biosens Bioelectron. 2003; 18: 521–527.
35. Goldman ER, Pazirandeh MP, Mauro JM, King KD, Frey JC, Anderson GP. Phage-displayed peptides as biosensor reagents. J Mol Recog. 2000; 13: 382–387.
36. Sheehan AD, Quinn J, Daly S, Dillon P, O’Kennedy R. The development of novel miniaturized immuno-sensing devices: A review of a small technology with a large future. Anal Lett. 2003; 36(3): 511–537.
37. Ewalt KL, Haigis RW, Rooney R, Ackley D, Krihak M. Detection of biological toxins on an active electronic microchip. Anal Biochem. 2001; 289: 162–172.
38. Yang JM, Bell J, Huang Y, Tirado M, Thomas D, Forster AH, et al. An integrated, stacked microlaboratory for biological agent detection with DNA and immunoassays. Biosens Bioelectron. 2002; 17: 605–618.
39. Moreno-Bondi M, Alarie J, Vo-Dinh T. Multi-analyte analysis system using an antibody-based biochip. Anal Bioanal Chem. 2003; 375: 120–124.
40. Stratis-Cullum DN, Griffin GD, Mobley J, Vass AA, Vo-Dinh T. A miniature biochip system for detection of aerosolized Bacillus globigii spores. Anal Chem. 2003; 75: 275–280.
41. Dill K, Montgomery DD, Ghindilis AL, Schwarzkopf KR, Ragsdale SR, Oleinikov A V. Immunoassays based on electrochemical detection using microelectrode arrays. Biosens Bioelectron. 2004; 20: 736–742.
42. Tachi T, Kaji N, Tokeshi M, Baba Y. Microchip-based homogeneous immunoassay using fluorescence polarization spectroscopy. Lab Chip 2009; 9: 966–971.
43. Lillehoj PB, Weib F, Ho C. A self-pumping lab-on-a-chip for rapid detection of botulinum toxin. Lab Chip 2010; 10: 2265–2270.
44. Monk DJ, Walt DR. Optical fiber-based biosensors. Anal Bioanal Chem. 2004; 379: 931–945.
45. Naimushin AN, Soelberg SD, Nguyen DK, Dunlap L, Bartholomew D, Elkind J, et al. Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron. 2002; 17: 573–584.
46. Woodbury RG, Wendin C, Clendenning J, Melendez J, Elkind J, Bartholomew D, et al. Construction of biosensors using a gold-binding polypeptide and a miniature integrated surface plasmon resonance sensor. Biosens Bioelectron. 1998; 13: 1117–1126.
47. Slavik R, Homola J, Brynda E. A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens Bioelectron. 2002; 17: 591–595.
48. Homola J, Dostalek J, Chen S, Rasooly A, Jiang S, Yee SS. Spectral surface plasmon resonance biosensor for detection of staphylococcal enterotoxin B in milk. Int J Food Microbiol. 2002; 75: 61–69.
49. Mukundan H, Anderson AS, Grace WK, Grace KM, Hartman N, Martinez JS, et al. Waveguide based biosensors for pathogen detection. Sensors 2009; 9: 5783–5809.
50. Geng T, Morgan MT, Bhunia AK. Detection of low levels of Listeria monocytogenes cells by using a fiber-optic immunosensor. Appl Environ Microbiol. 2004; 70: 6138–6146.
51. Narang U, Anderson GP, Ligler FS, Burans J. Fiber optic-based biosensor for ricin. Biosens Bioelectron. 1997; 12: 937–945.
52. Tims TB, Lim DV. Rapid detection of Bacillus anthracis spores directly from powders with an evanescent wave fiber-optic biosensor. J Microbiol Methods 2004; 59: 127–130.
53. Cao LK, Anderson GP, Ligler FS, Ezzell J. Detection of Yersinia pestis fraction 1 antigen with a fiber optic biosensor. J Clin Microbiol. 1995; 33: 336–341.
54. Donaldson KA, Kramer MF, Lim DV. A rapid detection method for Vaccinia virus, the surrogate for smallpox virus. Biosens Bioelectron. 2004; 20: 322–327.
55. Tempelman LA, King KD, Anderson GP, Ligler FS. Quantitating staphylococcal enterotoxin B in diverse media using a portable fiber-optic biosensor. Anal Biochem. 1996; 233: 50–57.
56. Ligler FS, Breimer M, Golden JP, Nivens DA, Dodson JP, Green TM et al. Integrating waveguide biosensor. Anal Chem. 2002; 74: 713–719.
57. Taitt CR, Golden JP, Shubin YS, Shriver-Lake LC, Sapsford KE, Rasooly A et al. A portable array biosensor for detecting multiple analytes in complex samples. Microb Ecol. 2004; 47: 175–185.
58. Ruan C, Zeng K, Varghese OK, Grimes CA. A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosens Bioelectron. 2004; 20: 585–591.
59. Kim GH, Rand AG, Letcher SV. Impedance characterization of a piezoelectric immunosensor, part II: Salmonella typhimurium detection using magnetic enhancement. Biosens Bioelectron. 2003; 18: 91–99.
60. Branch DW, Brozik SM. Low-level detection of a Bacillus anthracis simulant using Love-wave biosensors on 36[deg]YX LiTaO3. Biosens Bioelectron. 2004; 19: 849–859.
61. Hampl J, Hall M, Mufti NA, Yao YM, MacQueen DB, Wright WH, Cooper DE. Up-converting phosphor reporters in immunochromatographic assays. Anal Biochem. 2001; 288: 176–187.
62. Niedbala RS, Feindt H, Kardos K, Vail T, Burton J, Bielska B, et al. Detection of analytes by immunoassay using up-converting phosphor technology. Anal Biochem. 2001; 293: 22–30.
63. Zuiderwijk M, Tanke HJ, Niedbala RS, Corstjens PLAM. An amplification-free hybridization-based DNA assay to detect Streptococcus pneumoniae utilizing the up-converting phosphor technology. Clin Biochem. 2003; 36: 401–403.
64. Reeves A. At Los Alamos: Tracing biothreats with molecular signatures. http://www.eurekalert.org/features/doe/2002–10/danl-ala102902.php (access: 2011.09.12).
65. Theron J, Cloete TE, De Kwaadsteniet M. Nanotechnology in water treatment applications. Caister Academic Press: Norfolk, 2010.
66. Hammamieh R, Das R, Neill R, Mendis C, Bi S, Mani S, et al. Host gene expression responses to biothreat and infectious agents: implications for mathematical modeling of in vitro responses. RTO HFM Symposium on “NATO Medical Surveillance and Response, Research and Technology Opportunities and Options”; Apr 19–21 2004; Budapest, Hungary.
67. Lin B, Vahey MT, Thach D, Stenger DA, Pancrazio JJ. Biological threat detection via host gene expression profiling. Clin Chem. 2003; 49: 1045–1049.
68. Osolin C. Exploring “Detect to warn” systems at livermore. http://www.innovation-america.org/exploring-detect-warn-systems-livermore (access: 2011.09.07).
69. Scullion M, Banks L. Bio threat detection review. http://www.carolinafirejournal.com/articles/article-detail/articleid/97/bio-threat-detection-review.aspx (access: 2011.09.12).
70. Oliwa-Stasiak K, Molnar CI, Arshak K, Bartoszcze M, Adley CC. Development of a PCR assay for identification of the Bacillus cereus group species. J Appl Microbiol. 2010; 108: 266–273.
71. Heid CA, Stevens J, Livak KJ, Williams PM. Real-time quantitative PCR. Genome Res. 1996; 6(10): 986–994.
72. Livak K, Flood S, Marmaro J, Giusti W, Deetz K. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 1995; 4: 357–362.
73. Holland P, Abramson R, Watson R, Gelfand D. Detection of specific polymerase chain reaction product by utilizing the 5 to 3 exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci. 1991; 88: 7276–7280.
74. Johansson MK, Cook RM. Intramolecular dimers: A new design strategy for fluorescence-quenched probes. Chem Eur J. 2003; 9: 3466–3471.
75. Tyagi S, Kramer FR. Molecular beacons: Probes that fluoresce upon hybridization. Nat Biotechnol. 1996; 14: 303–308.
76. Nazarenko I, Lowe B, Darfler M, Ikonomi P, Schuster D, Rashtchian A. Multiplex quantitative PCR using self-quenched primers labeled with a single fluorophore. Nucleic Acids Res. 2002; 30(9): 1–7.
77. Whitcombe D, Theaker J, Guy SP, Brown T, Little S. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol. 1999;17: 804–807.
78. Higgins JA, Nasarabadi S, Karns JS, Shelton DR, Cooper M, Gbakima A, et al. A handheld real time thermal cycler for bacterial pathogen detection. Biosens Bioelectron. 2003; 18: 1115–1123.
79. Casper ET, Patterson SS, Smith MC, Paul JH. Development and evaluation of a method to detect and quantify enteroviruses using NASBA and internal control RNA (IC-NASBA). J Virol Methods. 2005; 124: 149–155.
80. Hibbitts S, Rahman A, John R, Westmoreland D, Fox JD. Development and evaluation of NucliSensR Basic Kit NASBA for diagnosis of parainfluenza virus infection with ‘end-point’ and ‘real-time’ detection. J Virol Methods. 2003;108: 145- 155.
81. Lambert AJ, Nasci RS, Cropp BC, Martin DA, Rose BC, Russell BJ, et al. Nucleic acid amplification assays for detection of La Crosse virus RNA. J Clin Microbiol. 2005;43: 1885–1889.
82. Zaytseva NV, Montagna RA, Lee EM, Baeumner AJ. Multi-analyte single-membrane biosensor for the serotype-specific detection of Dengue virus. Anal Bioanal Chem. 2004; 380: 46–53.
83. Baeumner AJ, Cohen RN, Miksic V, Min J. RNA biosensor for the rapid detection of viable Escherichia coli in drinking water. Biosens Bioelectron. 2003; 18: 405–413.
84. Yoo JH, Choi JH, Choi SM, Lee D, Shin WS, Min W, et al. Application of nucleic acid sequence-based amplification for diagnosis of and monitoring the clinical course of invasive aspergillosis in patients with hematologic diseases. Clin Infect Dis. 2005; 40: 392–398.
85. Schneider P, Wolters L, Schoone G, Schallig H, Sillekens P, Hermsen R, et al. Real-time nucleic acid sequence- based amplification is more convenient than real-time PCR for quantification of Plasmodium falciparum. J Clin Microbiol. 2005; 43: 402–405.
86. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000; 28: 1–7.
87. Parida M, Posadas G, Inoue S, Hasebe F, Morita K. Real-time reverse transcription loop-mediated isothermal amplification for rapid detection of West Nile virus. J Clin Microbiol. 2004; 42: 257–263.
88. Pham HM, Nakajima C, Ohashi K, Onuma M. Loop-mediated isothermal amplification for rapid detection of Newcastle disease virus. J Clin Microbiol. 2005; 43: 1646–1650.
89. Enosawa M, Kageyama S, Sawai K, Watanabe K, Notomi T, Onoe S, et al. Use of loop-mediated isothermal amplification of the IS900 sequence for rapid detection of cultured Mycobacterium avium subsp. paratuberculosis. J Clin Microbiol. 2003; 41: 4359–4365.
90. Horisaka T, Fujita K, Iwata T, Nakadai A, Okatani AT, Horikita T, et al. Sensitive and specific detection of Yersinia pseudotuberculosis by loop-mediated isothermal amplification. J Clin Microbiol. 2004; 42: 5349–5352.
91. Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol. 2003; 41: 2616–2622.
92. Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl Environ Microbiol. 2003; 69: 5023–5028.
93. Seki M, Yamashita Y, Torigoe H, Tsuda H, Sato S, Maeno M. Loop-mediated isothermal amplification method targeting the lytA gene for detection of Streptococcus pneumoniae. J Clin Microbiol. 2005; 43: 1581–1586.
94. Endo S, Komori T, Ricci G, Sano A, Yokoyama K, Ohori A, et al. Detection of gp43 of Paracoccidioides brasiliensis by the loop-mediated isothermal amplification (LAMP) method. FEMS Microbiol Lett. 2004; 234: 93–97.
95. Gau JJ, Lan EH, Dunn B, Ho CM, Woo JCS. A MEMS based amperometric detector for Escherichia coli bacteria using self-assembled monolayers. Biosens Bioelectron. 2001; 16: 745–755.
96. Chen X, Roy S, Peng Y, Gao Z. Electrical sensor array for polymerase chain reaction-free messenger RNA expression profiling. Anal Chem. 2010; 82: 5958–5964.
97. Wang J. Advanced electrokinetic-based micro total analysis system for biothreat detection. http://marce.vbi.vt.edu/index.php/marce/research/developmental_grants/advanced_electrokinetic_based_micro_total_analysis_system_for_biothreat_detection (access: 2011.09.22).
98. Karczmarczyk M, Bartoszcze M. DNA microarrays – new tool in the identification of biological agents. Przegl. Epidemiol. 2006; 60: 803–811.
99. Dill K, Liu RH, Grodzinski P. Microarrays: preparation, microfluidics, detection methods, and biological applications. New York, 2009.
100. Westin L, Miller C, Vollmer D, Canter D, Radtkey R, Nerenberg M, et al. Antimicrobial resistance and bacterial identification utilizing a microelectronic chip array. J Clin Microbiol. 2001; 39: 1097–1104.
101. Song JM, Mobley J, Vo-Dinh T. Detection of bacterial pathogen DNA using an integrated complementary metal oxide semiconductor microchip system with capillary array electrophoresis. J Chromatogr. B 2003; 783: 501–508.
102. Ali MF, Kirby R, Goodey AP, Rodriguez MD, Ellington AD, Neikirk DP, et al. DNA hybridization and discrimination of single-nucleotide mismatches using chip- based microbead arrays. Anal Chem. 2003;75: 4732–4739.
103. Liu RH, Yang J, Lenigk R, Bonanno J, Grodzinski P. Self-contained, fully integrated biochip for sample preparation, polymerase chain reaction amplification, and DNA microarray detection. Anal Chem. 2004; 76: 1824–1831.
104. Ciammaruconi A, Grassi S, De Santis R, Faggioni G, Pittiglio V, D’amelio R et al. Fieldable genotyping of Bacillus anthracis and Yersinia pestis based on 25-loci Multi Locus VNTR Analysis. BMC Microbiol. 2008; 8(21): 1–11.
105. Rider TH, Petrovick MS, Nargi FE, Harper JD, Schwoebel ED, Mathews RH, et al. A B cell-based sensor for rapid identification of pathogens. Science 2003; 301: 213–215.
106. Chaplen FWR, Upson RH, McFadden PN, Kolodziej W. Fish chromatophores as cytosensors in a microscale device: Detection of environmental toxins and bacterial pathogens. Pigment Cell Res. 2002; 15: 19–26.
107. Sharma V, Narayanan A, Rengachari T, Temes GC, Chaplen F, Moon UK. A low- cost, portable generic biotoxicity assay for environmental monitoring applications. Biosens Bioelectron. 2005; 20: 2218–2227.
108. Alupoaei CE, Olivares JA, Garcia-Rubio LH. Quantitative spectroscopy analysis of prokaryotic cells: vegetative cells and spores. Biosens Bioelectron. 2004; 19: 893–903.
109. Fenselau C, Demirev PA. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom Rev. 2001; 20: 157–171.
110. Demirev PA, Ramirez J, Fenselau C. Tandem mass spectrometry of intact proteins for characterization of biomarkers from Bacillus cereus T spores. Anal Chem. 2001; 73: 5725–5731.
111. Williams TL, Andrzejewski D, Lay JO, Musser SM. Experimental factors affecting the quality and reproducibility of MALDI-TOF mass spectra obtained from whole bacteria cells. J Am Soc Mass Spectrom. 2003; 14: 342–351.
112. Fergenson DP, Pitesky ME, Tobias HJ, Steele PT, Czerwieniec GA, Russell SC, et al. Reagentless detection and classification of individual bioaerosol particles in seconds. Anal Chem. 2004; 76: 373–378.
113. Van Ert MN, Hofstadler SA, Jiang Y, Busch JD, Wagner DM, Drader JJ et al. Mass spectrometry provides accurate characterization of two genetic marker types in Bacillus anthracis. Biotechniques 2004; 37: 642–644.
114. Lee H, Williams SKR. Analysis of whole bacterial cells by flow field-flow fractionation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Ana. Chem. 2003; 75: 2746–2752.
115. Bell SEJ, Mackle JN, Sirimuthu MN. Quantitative surface-enhanced Raman spectroscopy of dipicolinic acid–towards rapid anthrax endospore detection. Analyst 2005; 130: 545–549.
116. Zhang X, Young MA, Lyandres O, van Duyne RP. Rapid detection of an anthrax biomarker by surface-enhanced Raman spectroscopy. J Am Chem Soc. 2005; 127: 4484–4489.
117. Grow AE, Wood LL, Claycomb JL, Thompson PA. New biochip technology for label-free detection of pathogens and their toxins. J Microbiol Methods. 2003; 53: 221–233.
118. Alexander TA, Pellegrino PM, Gillespie JB. Near-infrared surface-enhanced-Raman- scattering-mediated detection of single optically trapped bacterial spores. Appl Spectrosc. 2003; 57: 1340–1345.
119. Jarvis RM, Goodacre R. Discrimination of bacteria using surface-enhanced Raman spectroscopy. Anal Chem. 2004; 76: 40–47.
120. Faulds K, Smith WE, Graham D. Evaluation of surface-enhanced resonance Raman scattering for quantitative DNA analysis. Anal Chem. 2004; 76: 412–417.
121. Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002; 297: 1536–1540.
122. Ni J, Lipert RJ, Dawson GB, Porter MD. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal Chem. 1999; 71: 4903–4908.
123. Xu S, Ji X, Xu W, Li X, Wang L, Bai Y, et al. Immunoassay using probe- labelling immunogold nanoparticles with silver staining enhancement via surface- enhanced Raman scattering. Analyst 2004; 129: 63–68.
124. Rajwa B, Dundar MM, Akova F, Bettasso A, Patsekin V, Hirleman ED, et al. Discovering the unknown: detection of emerging pathogens using a label-free light- scattering system. Cytometry A 2010; 77(12): 1103–1112.
125. Korves T, Hwang G. Bio threat aircraft warning system (BTAWS) transition. http://www.mitre.org/work/areas/research/2011iebriefings/05MSR155-KA.pdf (access: 2011.09.22).
126. Baglio S, Pérez-Rodríguez A, Martínez S, Serre C, Morante JR, Esteve J et al. Microinductive signal conditioning with resonant differential filters: high-sensitivity biodetection applications. IEEE 2007; 56(5): 1590–1595.
127. Morrison D, Milanovich F, Ivnitski D, Austin TR. Defense against bioterror: detection technologies, implementation strategies and commercial opportunities. Springer: Dordrecht, 2005.
128. PositiveID Corporation announces the launch of its multiplex bio threat assay, the first commercially available product of its kind. http://investors.positiveidcorp.com/releasedetail.cfm?ReleaseID=586348 (access: 2011.09.12).
129. Serre C, Martinez S, Perez-Rodriguez A, Morante JR, Esteve J, Montserrat J. Si technology based microinductive devices for biodetection applications. Sensor Actuator. A 2006; 132: 499–505.
130. He B, Morrow TJ, Keating CD. Nanowire sensors for multiplexed detection of biomolecules. Curr Opin Chem Biol. 2008; 12(5): 522–528.
131. Su XL, Li Y. Quantum dot biolabeling coupled with immunomagnetic separation for detection of Escherichia coli O157:H7. Anal Chem. 2004; 76: 4806–4810.
132. Lee LY, Ong SL, Hu JY, Ng WJ, Feng Y, Tan X et al. Use of semiconductor quantum dots for photostable immunofluorescence labeling of Cryptosporidium parvum. Appl Environ Microbiol. 2004; 70: 5732–5736.
133. Zhu L, Ang S, Liu WT. Quantum dots as a novel immunofluorescent detection system for Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol. 2004; 70: 597–598.
134. Goldman ER, Clapp AR, Anderson GP, Uyeda HT, Mauro JM, Medintz IL et al. Multiplexed toxin analysis using four colors of quantum dot fluororeagents. Anal Chem. 2004; 76: 684–688.
135. Zhang B, Gong X, Hao L, Cheng J, Han Y, Chang J. A novel method to enhance quantum yield of silica-coated quantum dots for biodetection. Nanotechnology 2008; 19(46): 465604.
136. Berger M. Researchers use nanoscale zinc oxide structures to detect anthrax. www.nanowerk.com/spotlight/spotid=542.php
137. Investigators Review Biodetection Technologies. http://www.hospimedica.com/?option=com_article&Itemid=230950000 (access: 2011.09.07).
138. Reed M. Synthesis breakthrough allows nanowires to act as biodetectors. http://giving.yale.edu/news/nanowires (access: 2011.09.27).
139. Wang SX, Guanxiong L. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE T Magn. 2008; 44(7): 1687–1702.
140. Theron J, Walker JA, Cloete TE. Nanotechnology in water treatment applications. Caister Academic Press Norfolk, 2010.
141. Ju A. Sensitive nano oscillator can detect pathogens. http://phys.org/news187523904.html (access: 2011.09.22).
142. Langer K, Barczynski P, Baksalary K, Filipiak M, Golczak S, Langer JJ. A fast and sensitive continuous flow nanobiodetector based on polyaniline nanofibrils. Microchim Acta 2007; 159: 201–206.
143. Langer JJ, Langer K, Barczynski P, Warchoł J, Bartkowiak KH. New “ON-OFF”- type nanobiodetector. Biosens Bioelectron. 2009; 24: 2947- 2949.
144. Wang J. Nanomaterial-based amplified transduction of biomolecular interactions. Small. 2005; 1(11): 1036–1043.
145. Tran LD, Nguyen DT, Nguyen BH, Do QP, Nguyen HL. Development of interdigitated arrays coated with functional polyaniline/MWCNT for electrochemical biodetection: Application for human papilloma virus. Talanta 2011; 85: 1560–1565.
146. Nano-Intelligent Detection System (NIDS). http://www.epa.gov/nhsrc/pubs/TISNano-IntelligentDetectionSystem.pdf (access: 2012.02.08).
147. Prasad PN. Nanophotonics. Wiley-Interscience Hoboken, 2004.
148. Zhao X, Hilliard LR, Mechery SJ, Wang Y, Bagwe RP, Jin S et al. A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. Proc Natl Acad Sci. 2004; 101(42): 15027–15032.
149. McBride MT, Masquelier D, Hindson BJ, Makarewicz AJ, Brown S, Burris K et al. Autonomous detection of aerosolized Bacillus anthracis and Yersinia pestis. Anal Chem. 2003; 75: 5293–5299.
150. www.biofiredx.com (access: 2012.02.08).
Copy url