Impact of Hymenoptera venom allergy and the effects of specific venom immunotherapy on mast cell metabolites in sensitized children
More details
Hide details
Chair of Pediatrics, Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
Chair of Medicine, Department of Medicine, Jagiellonian University Medical College, Cracow, Poland
Chair of Epidemiology and Preventive Medicine, Department of Medical Sociology, Jagiellonian University Medical College, Cracow, Poland
Ewa Cichocka-Jarosz   

Chair of Pediatrics, Department of Pediatrics, Jagiellonian University Medical College, Cracow, Poland
Ann Agric Environ Med. 2014;21(2):294–301
Introduction and objective:
Mast cells (MC) are effector cells during severe systemic reactions (SR) to Hymenoptera stings. Venom specific immunotherapy (VIT) is the treatment of choice for prevention of SR to stings. Tryptase and prostaglandin D2 metabolites (PGD2) are the markers of MC activation. The study design was to 1. compare baseline values of serum tryptase concentration (BST) and PGD2 metabolites in children with/without venom sensitization, 2. to evaluate an influence of rush VIT on MC markers in treated children.

Material and Methods:
Sensitized group: 25 children with SR to Hymenoptera sting. Control group: 19 healthy children. Active treatment: 5-day-rush-VIT. BST was evaluated by ImmunoCAP, PGD2 metabolites in blood and urine by GC-NICI-MS.

The baseline blood levels of MC markers were significantly higher, while urinary concentration of 9α,11β-PGF2 was significantly lower in the whole group of venom-sensitized children compared to controls. Severity of SR showed negative correlation with urinary PGD2 metabolites, while positive with plasma 9α,11β-PGF2 and BST concentration The highest sensitivity was obtained for plasma 9α,11β-PGF2 whereas the highest specificity for urinary PGD-M.

In children with IgE-mediated SR to Hymenoptera stings, elevation of baseline values of PGD2 metabolites in blood is accompanied by decreased excretion of its urinary metabolites. Assessment of stable PGD2 metabolites might serve as an independent MC marker to identify allergic children. There is an association between urinary PGD2 metabolites and severity of the SR to Hymenoptera stings.

Bilo BM, Rueff F, Mosbech H, Bonifazi F, Oude-Elberink JN. Diagnosis of Hymenoptera venom allergy. Allergy 2005; 60(11): 1339–1349.
Brown TC, Tankersley MS. The sting of the honeybee: an allergic perspective. Ann Allergy Asthma Immunol. 2011; 107(6): 463–470.
Shin YS, Liu JN, Hur GY, Hwang EK, Nam YH, Jin HJ, et al. Clinical Features and the Diagnostic Value of Component Allergen-Specific IgE in Hymenoptera Venom Allergy. Allergy Asthma Immunol Res. 2012; 4(5): 284–289.
Golden DBK. Insect sting allergy and venom immunotherapy. Ann Allergy Asthma Immunol. 2006; 96(2 Suppl 1): 16–21.
Akkoc T, Akdis M, Akdis CA. Update in the mechanisms of allergen-specific immunotherapy. Allergy Asthma Immunol Res. 2011; 3(1): 11–20.
Simons FER. World Allergy Organization survey on global availability of essentials for the assessment and management of anaphylaxis by allergy immunology specialists in health care settings Ann Allergy Asthma Immunol. 2010; 104(5): 405–412.
Bonadonna P, Perbellini O, Passalacqua G, Caruso B, Colarossi S, Dal Fior D, et al. Clonal mast cell disorders in patients with systemic reactions to Hymenoptera stings and increased serum tryptase levels. J Allergy Clin Immunol. 2009; 123(3): 680–686.
Rueff F, Przybilla B, Biló MB, Müller U, Scheipl F, Aberer W, et al. Predictors of severe systemic anaphylactic reactions to patients with hymenoptera venom allergy: importance of baseline serum tryptase – a study of the European Academy of Allergology and Clinical Immunology Interest Group on Insect Venom Hypersensitivity. J Allergy Clin Immunol. 2009; 124(5): 1047–1054.
Rueff F, Przybilla B, Biló MB, Müller U, Scheipl F, Aberer W, et al. Predictors of side effects during the buildup phase of venom immunotherapy for Hymenoptera venom allergy: The importance of baseline serum tryptase. J Allergy Clin Immunol. 2010; 126(1): 105–111.
Guenova E, Volz T, Eichner M, Hoetzenecker W, Caroli U, Griesinger G, et al. Basal serum tryptase as risk assessment for severe Hymenoptera sting reactions in elderly. Allergy. 2010; 65(7): 919–923.
O’Sullivan S, Mueller MU, Dahlen SE, Kumlin M. Analyses of prostaglandin D2 metabolites in urine: comparison between enzyme assay and negative ion chemical ionization gas chromatography mass spectrometry. Prostaglandins Other Lipid Mediat. 1997; 57(2–3): 149–165.
Tsikas D. Application of gas chromatography mass spectrometry and gas chromatography tandem mass spectrometry to assess in vivo synthesis of prostaglandins, thromboxane, leukotrienes, isoprostanes and related compounds in humans. J Chromatogr B Biomed Sci Appl. 1998; 717(1–2): 201–245.
Bochenek G, Niżankowska E, Gielicz A, Świerczyńska M, Szczeklik A. Plasma 9alpha,11beta-PGF2, a PGD2 metabolite, as a sensitive marker of mast cell activation by allergen in bronchial asthma. Thorax 2004; 59(6): 459–464.
Bochenek G, Nagraba K, Nizankowska E, Szczeklik A. A controlled study of 9alpha,11beta-PGF2 (a prostaglandin D2 metabolite) in plasma and urine of patients with bronchial asthma and healthy controls after aspirin challenge. J Allergy Clin Immunol. 2003; 111(4): 743–749.
Misso NLA, Aggarwal S, Phelps S, Beard R, Thompson PJ. Urinary leukotriene E 4 and 9α,11β-PGF 2 concentrations in mild, moderate and severe asthma, and in healthy subjects. Clin Exp Allergy 2004; 34(4): 624–631.
Kiełbasa B, Moeller A, Sanak M, Hamacher J, Hutterli M, Cmiel A, et al. Eicosanoids in exhaled breath condensates in the assessment of childhood asthma. Pediatr Allergy Immunol. 2008; 19(7): 660–669.
Nagakura T, Obata T, Shichijo K, Matsuda S, Sigimoto H, Yamashita K, et al. GC/MS analysis of urinary excretion of 9alpha,11beta-PGF2 in acute and exerice-induced asthma in children. Clin Exp Allergy. 1998; 28(2): 181–186.
Ono E, Taniguchi M, Mita H, Fukutomi Y, Higashi N, Miyazaki E, et al. Increased production of cysteiny leukotriens and prostaglandin D2 during human anaphylaxis. Clin Exp Allergy. 2008; 39(1): 72–80.
Cichocka-Jarosz E, Sanak M, Szczeklik A, Brzyski P, Gielicz A, Pietrzyk JJ. Serum tryptase level is better predictor of systemic side effects during venom specific immunotherapy in children than PGD 2 metabolites. J Investig Allergol Clin Immunol. 2011; 21(4): 260–269.
Schwartz LB. Diagnostic value of tryptase in anaphylaxis and mastocytosis. Immunol Allergy Clin North Am. 2006; 26(3): 451–463.
Sanak M, Gielicz A, Nagraba K, Kaszuba M, Kumik J, Szczeklik A. Targeted eicosanoids lipidomics of exhaled breath condensate in healthy subjects. J Chromatogr B. 2010; 878(21): 1796–1800.
Brenton AG, Godfrey AR. Accurate mass measurement: terminology and treatment of data. J Am Soc Mass Spectrom. 2010; 21(11): 1821–1835.
Zweig MH, Campbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clinical Chemistry 1993; 39(4): 561–577.
Zou KH, O’Malley AJ, Mauri L. Receiver-operating characteristic analysis for evaluating diagnostic tests and predictive models. Circulation 2007; 115(5): 654–657.
Bilò BM, Bonifazi F. Epidemiology of insect-venom anaphylaxis. Curr Opin Allergy Clin Immunol. 2008; 8(4): 330–337.
Altman, DG; Bland, JM. Diagnostic tests 2: Predictive values. BMJ. 1994; 309(6947): 102.
Jenerowicz D, Silny W, Dańczak-Pazdrowska A, Polańska A, Osmola-Mańkowska A, Olek-Hrab K. Environmental factors and allergic diseases. Ann Agric Environ Med. 2012; 19(3): 475–481.
Karakis GP, Sin BA, Tutkak H, Kose K, Misirligil Z. Genetic aspects of venom allergy: association with HLA class I and class II antigenes. Ann Agric Environ Med. 2010; 17(1): 119–123.
McGovan EC, Saini S. Update on the performance and application of basophil activation tests. Curr Allergy Asthma Rep 2013;13(1):101–109.
Cox L, Williams B, Sicherer S. Pearls and pitfalls of allergy diagnostic testing: report from the American College of Allergy, Asthma and Immunology/American Academy of Allergy, Asthma and Immunology Specific IgE Test Task Force. Ann Allergy Asthma Immunol. 2008; 101(6): 580–592.
Bernstein IL, Li JT, Bernstein DI, Hamilton R, Spector SL, Tan R, et al. Allergy diagnostic testing: an updated practice parameter. Ann Allergy Asthma Immunol. 2008; 100(3 suppl 3): 1–148.
Breslow RG, Caiado J, Castells MC. Acetylsalicylic acid and montelukast block mast cell mediator–related symptoms during rapid desensitization Ann Allergy Asthma Immunol. 2009; 102(2): 155–160.
Jenning A Duggan E, Perry IJ, Hourihane JO. Epidemiology of allergic reactions to hymenoptera stings in Irish school children. Pediatr Allergy Immunol. 2010; 21(8): 1166–1170.
Martinez-Canavate A, Tabar AI, Eseverri JL, Martín F, Pedemonte-Marco C. An epidemiological survey of hymenoptera venom allergy in the Spanish paediatric population. Allergol Immunopathol (Madr). 2010; 38(5): 259–262.
Yavuz ST, Sackesen C, Sahiner UM, Buyuktiryaki B, Arik Yilmaz E, Sekerel BE, Soyer OU, Tuncer A. Importance of serum basal tryptase levels in children with insect venom allergy. Allergy 2013;68(3): 386–391.
Komarow HD, Hu Z, Brittain E, Uzzaman A, Gaskins D, Metcalfe DD. Serum tryptase levels in atopic and nonatopic children. J Allergy Clin Immunol. 2009;124(4): 845–848.
Vegh AB, George KC, Lotfi-Emran S. Total tryptase levels indicate risk for systemic reactions to rush immunotherapy and mast cell activation. Ann Allergy Asthma Immunol. 2011; 106(4): 342–343.
Kucharewicz I, Bodzenta-Lukaszyk A, Szymanski W, Mroczko B, Szmitkowski M. Basal serum tryptase level correlates with severity of hymenoptera sting and age. J Investig Allergol Clin Immunol. 2007; 17(2): 65–69.
Gorska L, Chelminska M, Kuziemski K, Skrzypski M, Niedoszytko M, Damps-Konstanska I, et al. Analysis of safety, risk factors and pretreatment methods during rush Hymenoptera venom immunotherapy. Int Arch Allergy Immunol. 2008; 147(3): 241–245.
Borer-Reinholdt M, Haeberli G, Bitzenhofer M, Jandus P, Hausmann O, Fricker M, et al. An increase in serum tryptase even below 11,4 ng/ml may indicate a mast cell mediated hypersensitivity reaction: a prospective study in Hymenoptera venom allergic patients. Clin Exp Allergy. 2011; 4(12): 1777–1783.
Dugas-Breit S, Przybilla B, Schopf P, Rueff F. Possible circadian variation of serum mast cell tryptase concentration. Allergy. 2005; 60(5): 689–692.
Song WL, Wang M, Ricciotti E, Fries S, Yu Y, Grosser T, et al. Tetranor PGDM, an abundant urinary metabolite reflects biosynthesis of prostaglandin D2 in mice and humans. J Biol Chem. 2008; 283(2): 1179–1188.
Higashi N, Mita H, Ono E, Fukutomi Y, Yamaguchi H, Kajiwara K, et al. Profile of eicosanoid generation in aspirin-intolerant asthma and anaphylaxis assessed by new biomarkers. J Allergy Clin Immunol. 2010; 125(5): 1084–1091.
Higashi N, Mita H, Yamaguchi H, Fukutomi Y, Akiyama K, Taniguchi M. Urinary tetranor-PGDM concentrations in aspirin-intolerant asthma and anaphylaxis. J Allergy Clin Immunol. 2012; 129(2): 557–559.
Ebo DG, Bridts CH, Hagendorens MM, De Clerck LS, Stevens WJ. The basophil activation test in the diagnosis and follow-up of hymenoptera venom allergy: an alternative point of view. J Investig Allergol Clin Immunol 2008; 18(6): 493–494.
Celesnik N, Vesel T, Rijavec M, Silar M, Erzen R, Kosnik M, Kloft Zitnik SE, Avcin T, Korosec P. Short-term venom immunotherapy induces desensitization of FcepsilonRI-mediated basophil response. Allergy 2012; 67(12): 1594–1600.
Nullens S, Sabato V, Faber M, Leysen J, Bridts CH, De Clerck LS, Falcone FH, Maurer M, Ebo DG. Basophilic histamine content and release during venom immunotherapy: Insights by flow cytometry. Cytometry B Clin Cytom 2013; 84(3): 173–178.
Zitnik SE, Vesel T, Avcin T, Silar M, Kosnik M, Korosec P. Monitoring honeybee venom immunotherapy in children with the basophil activation test. Pediatr Allergy Immunol 2012; 23(2): 166–172.
Korosec P, Erzen R, Silar M, Bajrovic N, Kopac P, Kosnik M. Basophil responsiveness in patients with insect sting allergies and negative venom-specific immunoglobulin E and skin prick test results. Clin Exp Allergy. 2009; 39(11): 1730–1737.
Jutel M, Muller UR, Fricker M, Rihs S, Pichler WJ, Dahinden C. Influence of bee venom immunotherapy on degranulation and leukotriene generation in human blood basophils. Clin Exp Allergy. 1996; 26(10): 1112–1118.
Cichocka-Jarosz E, Dorynska A, Pietrzyk JJ, Spiewak R. Laboratory markers of mast cell and basophil activation in monitoring rush immunotherapy in bee venom-allergic children. Immunotherapy 2011; 3(8): 1013–1017.