Effect of povidone iodine, chlorhexidine digluconate and toyocamycin on amphizoic amoebic strains, infectious agents of Acanthamoeba keratitis – a growing threat to human health worldwide
More details
Hide details
Department of Medical Biology, Medical University, Warsaw, Poland
Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard University, Cambridge, USA
One Health Center, Berry College, School of Mathematical and Natural Sciences, Mount Berry, Georgia, USA
Department of Ophthalmology, SPKSO Ophthalmic Hospital, Medical University, Warsaw, Poland
Free-living amoebae, ubiquitous in outer environments, in predisposing circumstances may exist as parasites, infectious agents of Acanthamoeba keratitis. In recent decades, the vision-threatening corneal infection is a growing human health threat worldwide, including Poland. The applied therapy is often ineffective due to diagnostic mistakes, various pathogenicity of Acanthamoeba strains and high resistance of cysts to drugs; many agents with possible anti-amoebic activity are still being tested. In the presented study, selected chemicals are investigated in terms of their in vitro effect on corneal and environmental Acanthamoeba strains.

Material and methods:
Samples of a corneal isolate from a patient with severe Acanthamoeba keratitis,of assessed on the basis of genotype associations of 18S rRNA and the type strain, Acanthamoeba castellanii Neff cultivated in bacteria-free condition, were exposed to povidone iodine, chlorhexidine digluconate or toyocamycin. In vitro population dynamics of the strains were monitored and compared to those of control cultures.

All chemicals showed anti-amoebic effects with different degrees of effectiveness. Significant differences were observed in the in vitro population dynamics, and the morpho-physiological status of A. castellanii Neff T4 and corneal strains determined as A. polyphaga T4 genotype, exposed to povidone iodine or toyocamycin, in comparison with chlorhexidine taken as reference.

Time-dependent amoebstatic in vitro effects were demonstrated for all agents, in particular, the results of assays with povidone iodine are promising. No significant stimulation of encystation appeared; however, as cysticidal efficacy of chemicals is expected, complementary research is needed on different Acanthamoeba strains with modified agent concentrations and method application.

Marcin Padzik   
Department of Medical Biology Medical University of Warsaw, Warsaw, Poland, Nowogrodzka 73, 02-018 Warszawa, Poland
1. Visvesvara GS, Stehr-Green JK. Epidemiology of free-living ameba infections. J. Protozool. 1990; 37: 25S–33S.
2. Kilvington S, White DG. Acanthamoeba: biology, ecology, and human disease. Rev Med Microbiol. 1990; 5: 12–20.
3. Martinez AJ, Visvesvara GS. Free-living, amphizoic and opportunistic amebas. Brain Pathol. 1997; 7: 583–598.
4. Schuster FL, Visvesvara GS. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol. 2004; 34: 1001–1027.
5. Befinger M, Myjak P, Pietkiewicz H. Occurrence of amphizoic amoebae in lake Żarnowieckie. Bull Inst Mar Trop Med Gdynia. 1986; 37: 275–284.
6. Marciano-Cabral F, Cabral G. Acanthamoeba spp. as agents of disease in humans. Clin Microbiol Rev. 2003; 16: 273–307.
7. Tsvetkova N, Schild M, Panaiotov S, Kurdova-Mintcheva R, Gottstein B, Walochnik J, Aspöck H, Siles Lucas M, Müller N. The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitol Res. 2004; 92: 405–413.
8. Khan NA. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev. 2006; 30: 564–595.
9. Lorenzo-Morales J, Monteverde-Miranda CA, Jiménez C, Tejedor ML, Valladares BORA. Evaluation of Acanthamoeba isolates from environmental sources in Tenerife, Canary Islands, Spain. Ann Agric Env Med. 2005; 12: 233–236.
10. Wesołowska M, Cisowska A, Myjak P, Marek J, Jurowska-Liput J, Jakubaszko J. Acanthamoeba keratitis in contact lens wearers in Poland. Adv Clin Exp Med.2006.; 15: 553–555.
11. Łanocha N, Kosik-Bogacka D, Maciejewska A, Sawczuk M, Wilk A, Kuźna-Grygiel W. The occurrence Acanthamoeba (free living amoeba) in environmental and respiratory samples in Poland. Acta Prot. 2009; 48: 271–279.
12. Trabelsi H, Sellami A, Dendena F, Sellami H, Cheikh-rouhou F, Makni F, Makni F, Ben DS, Ayadi A. Free-living amoebae (FLA): morphological and molecular identification of Acanthamoeba in dental unit water. Amibes libres: identification morphologiqueet moléculaire d’Acanthamoeba dans l’eau des unités dentaires. Parasite. 2010; 17: 67–70.
13. Walochnik J, Scheikl U, Haller-Schober EM. Twenty years of Acanthamoeba diagnostics in Austria. J Eukaryot Microbiol. 2015; 62: 3– 11.
14. Lass A, Szostakowska B, Idzińska A, Chomicz L. The first genotype determination of Acanthamoeba potential threat to human health, isolated from natural water reservoirs in Poland. J Parasitol Res. 2014; 113: 2693–2699.
15. Lorenzo-Morales J, Khan NA, Walochnik J. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite. 2015; 22: 1–20.
16. Chomicz L, Conn DB, Padzik M, Szaflik JP, Walochnik J, Zawadzki PJ, Pawłowski W, Dybicz M. Emerging threats for human health in Poland: pathogenic isolates from drug resistant Acanthamoeba keratitis monitored in terms of their in vitro dynamics and temperature adaptability. BioMed Res Int. Hindawi Publishing Corporation 2015, Article ID 231285, 10.1155/2015/231285.
17. Khan NA. Acanthamoeba: Biology and Pathogenesis. 2nd ed, Caister Academic Press. Norfolk, UK. 2015; 1 – 295.
18. Berger P, Papazian L, Drancourt M, Lascolat B, Auffray JP, Raoult D. Amoeba associated microorganisms and diagnosis of nosocomial pneumonia. Emerg Inf Dis. 2006; 12: 248–255.
19. Červa L, Novak K. Amoebic meningoencephalitis: sixteen fatalities. Science. 1968; 160: 92.
20. Nagington PG, Watson TJ. Amoebic infection of the eye. Lancet. 1974; 304: 1537–1540.
21. Ibrahim YW, Boase DL, Cree IA. Factors affecting the epidemiology of Acanthamoeba keratitis. Ophthalmic Epidemiol. 2007; 14: 53–60.
22. Clarke B, Sinha A, Parmar DN, Sykakis E. Advances in the diagnosis and treatment of Acanthamoeba keratitis. Hindawi. J Ophthalmol. 2012; Article ID 484892, 6 pages.
23. Szaflik JP, Padzik M, Chomicz L, Olędzka G, Izdebska J. Przydatność diagnostyki in vitro w trudnych przypadkach Acanthamoeba keratitis, wymagających postępowania farmakoterapeutycznego i chirurgicznego. (Usefulness of in vitro diagnostics in difficult incidences of Acanthamoeba keratitis requiring pharmacotherapy and surgical management.) (in Polish with summary in English). Okulistyka. 2012; 3: 28–32.
24. Lorenzo-Morales J, Martín-Navarro CM, López-Arencibia A, Arnalich-Montiel F, Piñero JE, Valladares B. Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends Parasitol. 2013; 29: 181–187.
25. Page MA, William DM. Acanthamoeba Keratitis: A 12-year experience covering a wide spectrum of presentations, diagnoses, and outcomes. J Ophthalm. 2013; 2013: 1–6.
26. Risler A, Coupat-Goutaland B, Pelandakis M. Genotyping and phylogenetic analysis of Acanthamoeba isolates associated with keratitis. Parasitol Res. 2013; 112: 3807–3816.
27. Padzik M, Chomicz L, Szaflik JP, Chruscikowska A, Perkowski K, Szaflik J . In vitro effects of selected contact lens care solutions on Acanthamoeba castellanii strains in Poland. Exp Parasitol. 2014; 145: 98–101.
28. Chomicz L, Padzik M, Szaflik JP, Nahorski WL, Kryczka T, Szaflik J. Monitoring of in vitro dynamics of Acanthamoeba strains isolated from infected eyes as a useful tool in keratitis management. Exp Parasitol. 2014; 145: 73–77.
29. Derda M, Solarczyk P, Cholewiński M, Hadaś E. Genotypic characterization of amoeba isolated from Acanthamoeba keratitis in Poland. Parasitol Res. 2015; 114: 1233–1237.
30. Chomicz L, Szaflik JP, Padzik M, Izdebska J. Acanthamoeba keratitis: The emerging vision – threatening corneal disease. Advances in Common Eye Infections. Ed.: Shimon Rumelt. Published by INTECH 2016; 2: 99–120.
31. Aksozek A, McClellan K, Howard K, Niederkorn JY, Alizadeh H. Resistance of Acanthamoeba castellanii cysts to physical, chemical and radiological conditions. J Parasitol. 2002; 88: 621–623.
32. Chomicz L, Padzik M., Graczyk Z., Starosciak B.,Graczyk T., Naprawska A., Olędzka G., Szostakowska B. Acanthamoeba castellanii: in vitro effects of selected biological, physical and chemical factors. Exp Parasitol. 2010; 126: 103–105. doi:10.1016/j.exppara.2010.01.025.
33. Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, Fuerst PA, Byers TJ. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J Clin Microbiol. 2001; 39: 1903–1911.
34. Sharma M, Bloch A, Bobek M. A practical synthesis of the antibiotic toyocamycin. Nucleos Nucleot Nucl. 1993; 12: 643–648.
35. Parmar DN, Awwad ST, Petroll WM., Bowman RW, McCulley JP., Cavanagh HD. Tandem scanning confocal microscopy in the diagnosis of suspected Acanthamoeba keratitis. Ophthalmology 2006; 113: 538–547.
36. Szaflik JP. Comparison of in vivo confocal microscopy of human cornea by white light scanning slit and laser scanning systems. Cornea 2007; 26: 438–445.
37. Padzik M, Szaflik JP, Baltaza W, Perkowski K, Dybicz M, Chomicz L. In vivo confocal microscopy and in vitro culture techniques as tools for evaluation of severe Acanthamoeba keratitis incidents. Annals Parasit. 2017; 63: 341–346. doi:10.17420/ap6304.121.
38. Baltaza W, Padzik M, Szaflik JP, Dybicz M, Hendiger E, Chomicz L. Amoebicidal or amoebostatic influence of disinfectants used in health facilities and laboratories on corneal strains of Acanthamoeba. Annals Parasit. 2017; 63: 167–172. https://doi:10.17420/ap6303.10....
39. Padzik M, Hendiger EB, Chomicz L, Grodzik M, Szmidt M, Grobelny J, Lorenzo-Morales J. Tannic acid-modified silver nanoparticles as a novel therapeutic agent against Acanthamoeba. Parasitol Res. 2018; 117: 3519–3525.
40. Gatti S, Cevini C, Bruno A, Penso G, Rama P, Scaglia M. In vitro effectiveness of povidoneiodine on Acanthamoeba isolates from human cornea. Antimicr Ag Chemother. 1998; 10: 2232–2234.
41. Kilvington S. Antimicrobial efficacy of a povidone-iodine (PI) and a one-step hydrogen peroxide contact lens disinfection system. Contact Lens and Anterior Eye. 2004; 27: 209–212.
42. Martín-Navarro CM, Lorenzo-Morales J, López-Arencibia A, Valladares B, Piñero JE. Acanthamoeba spp.: Efficacy of Bioclen FROne Step, a povidone-iodine based system for the disinfection of contact lenses. Exp Parasitol. 2010; 126: 109–112.
43. Seal DV, Hay J, Kirkness CM. Chlorhexidine or polyhexamethylene biguanide for Acanthamoeba keratitis. Lancet 1995; 345: 136.
44. Chomicz L, Padzik M, Piekarczyk J, Graczyk Z, Godineau N. Szałwiński M, Piekarczyk P, Graczyk T, Olędzka G, Kazimierczuk Z. Effects of metronidazole, chlorhexidine digluconate and new-synthesized benzimidazole and nitroimidazole derivatives on in vitro viability of selected protozoans – potential factors of intra and after -surgery complications. Chir. Czaszk Szczęk Twarz Ortop Szczęk. 2008; III, 6: 168–174.
45. Wright JM, Dunn LA, Kazimierczuk Z, Burgess AG, Krauer KG, Upcroft P, Upcroft JA. Susceptibility in vitro of clinically metronidazole-resistant Trichomonas vaginalis to nitazoxanide, toyocamycin, and 2-fluoro-2’-deoxyadenosine. Parasitol Res. 2010; 107: 847–853.
46. Padzik M, Szaflik JP, Izdebska J, Szostakowska B, Szaflik J, Chomicz L. Acanthamoeba polyphaga strain – causative agent of vision-threatening keratitis uncommonly detected in Poland, susceptible in vitro to toyocamycin. Klinika Oczna. 2017; 119: 77–82. ISSN 0023-2157 Index 362646.