The importance of nutritional factors and dietary management of Hashimoto’s thyroiditis
More details
Hide details
University of Life Sciences, Warsaw, Poland
Agricultural University, Kraków, Poland
Nencki Institute of Experimental Biology PAN, Poland
Corresponding author
Paulina Ihnatowicz   

Warsaw University of Life Sciences, Nowoursynowska 166, Warszawa, Poland
Ann Agric Environ Med. 2020;27(2):184-193
Hashimoto (HT) is an autoimmune disease in which destruction of the thyroid occurs as a result of lymphocyte infiltration. It is caused by an increased level of titers of antibody against thyroid peroxidase (TPO) and thyroglobulin (TG). Because of that,in HT patients, changes are observed in the level and metabolism of thyroid hormones, which leads to unspecified physical and psychological symptoms. A high level of antibodies attacking thyroid antigens has been positively correlated with the symptoms. From the etiological point of view, the most important are genetic factors; however, environmental factors are necessary to provoke the immune system to attack until the process is over. Scientists indicate specified stress, toxification, microbiota dysbiosis and under- or over-nutrition, to name only a few. Dietotherapy of Hashimoto’s is based on the proper nourishment of the body and regulation of the immune system by an anti-inflammatory diet. Observational and controlled trials have shown frequent nutrition deficiencies in HT patients. In literature, there is evidence for selenium, potassium, iodine, copper, magnesium, zinc, iron, vitamin A, C, D and B. The role of the proper level of protein intake, dietary fibre and unsaturated fatty acids, especially the n-3 family, has been indicated. HT patients should often eliminate lactose because of intolerance and interactions with levothyroxine and gluten because of possible interactions of gliadin with thyroid antigens. The article describes the nutrition factors of HT patients, and share nutrition recommendations for diet therapy.
Krysiak R, Szkróbka W, Okopień B. The Effect of Gluten-Free Diet on Thyroid Autoimmunity in Drug-Naïve Women with Hashimoto’s Thyroiditis: A Pilot Study. Exp Clin Endocrinol Diabetes. 2018 Jul 30.
Hiromatsu Y, Satoh H, Amino N. Hashimoto’s thyroiditis: history and future outlook. Hormones (Athens, Greece). 2013; 12(1): 12–18.
Monaco F. Thyroid Diseases. Taylor and Francis; 2012, p. 78.
Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Roliński J. Immune disorders in Hashimoto’s thyroiditis: what do we know so far? J Immunol Res. 2015; 2015: 979167.
Ott J, Promberger R, Kober F, Neuhold N, Tea M, Huber JC et al. Hashimoto’s thyroiditis affects symptom load and quality of life unrelated to hypothyroidism: a prospective case-control study in women undergoing thyroidectomy for benign goiter. Thyroid 2011; 21: 161–167.
Wiersinga WM. Clinical Relevance of Environmental Factors in the Pathogenesis of Autoimmune Thyroid Disease. Endocrinol Metab. 2016; 31: 213–22.
Boas M, Feldt-Rasmussen U, Main KM. Thyroid effects of endocrine disrupting chemicals. Mol Cell Endocrinol 2012; 355: 240–148.
Kawicka A, Regulska-Ilow B. [Metabolic disorders and nutritional status in autoimmune thyroid diseases]. Postepy Hig Med Dosw (online) 2015; 69: 80–90 (Polish).
Lizis-Kolus K. Ocena wpływu niedoboru witaminy D na przebieg choroby Hashimoto u chorych w województwie świętokrzyskim [praca doktorska]. Kraków; Uniwersytet Jagielloński; 2015 (Polish).
Virili C, Fallahi P, Antonelli A, Benvenga S, Centanni M. Gut microbiota and Hashimoto’s thyroiditis. Rev Endocr Metab Disord. 2018; 19(4): 293–300.
Benvenga S, Guarneri F. Molecular mimicry and autoimmune thyroid disease. Rev Endocr Metab Disord. 2016; 17: 485–498.
Palm NW, de Zoete MR, Flavell RA. Immune-microbiota interactions in health and disease. Clin Immunol. 2015; 159: 122–127.
Liu YZ, Wang YX, Jiang CL. Inflammation: The Common Pathway of Stress-Related Diseases. Front Hum Neurosci. 2017; 11: 316.
Nowotny K, Jung T, Höhn A, Weber D, Grune T. Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules. 2015 Mar 16; 5(1):194–222. doi: 10.3390/biom5010194.
Aseervatham GS, Sivasuda T, Jeyadevi R, Arul Ananth D. Environmental factors and unhealthy lifestyle influence oxidative stress in humans – an overview. Environ Sci Pollut Res Int. 2013; 20(7): 4356–4369.
Uribarri J, del Castillo MD, de la Maza MP, Filip R, Gugliucci A, Luevano-Contreras C, et al. Dietary advanced glycation end products and their role in health and disease. Adv Nutr 2015; 6: 461–473.
Costantino S, Paneni F, Battista R, Castello L, Capretti G, Chiandotto S, et al. Impact of glycemic variability on chromatin remodelling, oxidative stress, and endothelial dysfunction in patients with type 2 diabetes and with target HbA1c levels. Diabetes 2017; 66: 2472–2482.
Pirillo A, Norata GD, Catapano AL. Postprandial lipemia as a cardiometabolic risk factor. Curr Med Res Opin 2014; 30: 1489–1503.
Manna P, Jain SK. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: causes and therapeutic strategies. Metab Syndr Relat Disord. 2015; 13: 423–444.
Sarniak A, Lipińska J, Tytman K, Lipińska S. [Endogenous mechanisms of reactive oxygen species (ROS) generation]. Postepy Hig Med. Dosw (online) 2016; 70: 1150–1164 (Polish).
Cho BA, Yoo SK, Song YS, Kim SJ, Lee KE, Shong M, et al. Transcriptome network analysis reveals aging-related mitochondrial and proteasomal dysfunction and immune activation in human thyroid. Thyroid 2018; 28: 656–666.
Dikic I. Proteasomal and autophagic degradation systems. Annu Rev Biochem. 2017; 86: 193–224.
Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O. Oxidative Stress and Antioxidant Defense. World Allergy Organ J. 2012; 5(1): 9–19.
Karbownik-Lewińska M, Kokoszko-Bilska A. Oxidative damage to macromolecules in the thyroid – experimental evidence. Thyroid Res. 2012; 5: 25.
Reddy VS, Bukke S, Mahato K, Kumar V, Reddy NV, Munikumar M, et al. A meta-analysis of the association of serum ischaemia-modified albumin levels with human hypothyroidism and hyperthyroidism. Biosci Rep 2017; 37: pii: BSR20160268.
Ruggeri RM, Vicchio TM, Cristani M, Certo R, Caccamo D, Alibrandi A, et al. Oxidative stress and advanced glycation end products in Hashimoto’s thyroiditis. Thyroid 2016; 26: 504–511.
Ventura M, Melo M, Carrilho F. Selenium and Thyroid Disease: From Pathophysiology to Treatment. Int J Endocrinol. 2017; 2017: 10.1155/2017/1297658.
Ates I, Yilmaz FM, Altay M, Yilmaz N, Berker D, Güler S. The relationship between oxidative stress and autoimmunity in Hashimoto’s thyroiditis. Eur J Endocrinol 2015; 173: 791–799. 10.1530/EJE-15-0617.
Ascorbate and Glutathione: The Heart of the Redox Hub Christine H. Foyer, Graham NoctorPublished January 2011. doi:
Rostami R, Aghasi MR, Mohammadi A, Nourooz-Zadeh J. Enhanced oxidative stress in Hashimoto’s thyroiditis: inter-relationships to biomarkers of thyroid function. Clin Biochem. 2013; 46: 308–312.
Nanda N, Bobby Z, Hamide A. Oxidative stress in anti thyroid peroxidase antibody positive hypothyroid patient. Asian J Biochem 2012; 7: 54–58.
Baser H, Can U, Baser S, Yerlikaya FH, Aslan U, Hidayetoglu BT. Assessment of oxidative status and its association with thyroid autoantibodies in patients with euthyroid autoimmune thyroiditis. Endocrine 2015; 48: 916–923.
Perricone C, De Carolis C, Giacomelli R, Greco E, Cipriani P, Ballanti E et al. Inhibition of the complement system by glutathione: molecular mechanisms and potential therapeutic implications. Int J Immunopathol Pharmacol 2011; 24: 63–68.
Zhang Z, Zhang X, Fang X, Niimi M, Huang Y, Piao H, et al. Glutathione inhibits antibody and complement-mediated immunologic cell injury via multiple mechanisms. Redox Biol 2017; 12: 571–581. 10.1016/j.redox.2017.03.030.
Oxidative post-translational modifications and their involvement in the pathogenesis of autoimmune diseases Brent J.Ryan Paul G.Winyard
Giannakou M, Saltiki K, Mantzou E, Loukari E, Philippou G, Terzidis K, et al. RAGE polymorphism and oxidative stress levels in Hashimoto’s thyroiditis. Eur J Clin Invest 2017; 47: 341–347.
Giannakou M, Saltiki K, Mantzou E, Loukari E, Philippou G, Terzidis K, et al. The effect of obesity and dietary habits on oxidative stress in Hashimoto’s thyroiditis. Endocr Connect 2018; 7: 990–997.
Omeljaniuk WJ, Dziemanowicz M, Naliwajko SK, Bartosiuk E, Markiewicz-Żukowska R, Borawska MH. [Evaluation of the diet of patients with Hashimoto’s disease]. Bromat Chem Toksykol 2011; 44: 428–433 (Polish).
Pietrych A, Filip R. [Effect of diet on reducing body mass in patients with overweight and obesity]. Probl Hig Epidemiol 2011; 92: 577–579 (Polish).
Gibiński M, Sikora M. [Food and non-food applications of beta-glucans]. Kraków; Uniwersytet Rolniczy w Krakowie; 2009 (Polish).
Chin KY, Ima-Nirwana S, Mohamed IN, Aminuddin A, Johari MH, Ngah WZ. The relationship between thyroid hormones and thyroid-stimulating hormone with lipid profile in euthyroid men. Int J Med Sci 2014; 11: 349–355.
Zakrzewska E, Zegan M, Michota-Katulska E. [Dietary recommendations in hypothyroidism with coexistence of Hashimoto’s disease]. Bromat Chem Toksykol 2015; 18: 117–127 (Polish).
Shiqian Hu and Margaret P. Rayman. Multiple Nutritional Factors and the Risk of Hashimoto’s Thyroiditis. Thyroid VOL. 27, NO. 5 1 May 2017
Khatiwada S, Gelal B, Baral N, Lamsal M. Association between iron status and thyroid function in Nepalese children. Thyroid Res. 2016; 9: 2.
Zimmermann MB, Gizak M, Abbott K, Andersson M, Lazarus JH. Iodine deficiency in pregnant women in Europe. Lancet Diabetes Endocrinol 2015; 3(9): 672–674.
Gietka-Czernel M. [Iodine prophylaxis] 2015; 28: 839–845 (Polish).
Stolińska H, Wolańska D. [Nutrients important in hypothyroidism]. Żyw. Czł. i Metabol. 2012; 39: 221–231 (Polish).
Szybiński Z. Iodine prophylaxis in the lights of the last recommendation of who on reduction of daily salt intake. Recent Pat Endocr Metab Immune Drug Discov. 2017; 11: 39–42.
Sengupta P. Potential Health Impacts of Hard Water. Int J Prev Med 2013; 4: 866–875.
Iodine and thyroid function. Hye Rim Chung Ann Pediatr Endocrinol Metab. 2014 Mar; 19(1): 8–12. Published online 2014 Mar 31. doi: 10.6065/apem.2014.19.1.8.
Sang Z, Wang PP, Yao Z, Shen J, Halfyard B, Tan L, et al. Exploration of the safe upper level of iodine intake in euthyroid Chinese Adults: a randomized double-blind trial. Am J Clin Nutr 2012; 95: 367–373.
Xu C, Wu F, Mao C, Wang X, Zheng T, Bu L, et al. Excess iodine promotes apoptosis of thyroid follicular epithelial cells by inducing autophagy suppression and is associated with Hashimoto thyroiditis disease. J Autoimmun 2016; 75: 50–57.
Xu J, Liu XL, Yang XF, Guo HL, Zhao LN, Sun XF. Supplemental selenium alleviates the toxic effects of excessive iodine on thyroid. Biol Trace Elem Res 2011; 141: 110–118.
Xue H, Wang W, Li Y, Shan Z, Li Y, Teng X, et al. Selenium upregulates CD4(+)CD25(+) regulatory T cells in iodine-induced autoimmune thyroiditis model of NOD.H-2(h4) mice. Endocr J. 2010; 57: 595–601.
Duntas LH, Benvenga S. Selenium: an element for life. Endocrine 2015; 48: 756–775.
Krysiak R, Okopien B. The effect of levothyroxine and selenomethionine on lymphocyte and monocyte cytokine release in women with Hashimoto’s thyroiditis. J Clin Endocrinol Metab 2011; 96: 2206–15.
Socha K, Dziemianowicz M, Omeljaniuk WJ, Soroczyńska J, Borawska MH. [Dietary habits and the concentration of selenium in serum of patients with Hashimoto disease]. Probl Hig Epidemiol 2012; 93: 824–827 (Polish).
Kieliszek M, Błażejak S. Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 2016; 21(5). pii: E609.
Kalaras MD, Richie JP, Calcagnotoo A, Beelman RB. Mushrooms: A rich source of the antioxidants ergothioneine and glutathione. Food Chemistry 2017; 233: 429–433.
Liontiris MI, Mazokopakis EE. A concise review of Hashimoto thyroiditis (HT) and the importance of iodine, selenium, vitamin D and gluten on the autoimmunity and dietary management of HT patients. Points that need more investigation. Hell J Nucl Med. 2017; 20: 51–56.
Betsy A, Binitha MP, Sarita S. Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int J Trichology 2013; 5: 40–42.
Wang K, Wei H, Zhang W, Li Z, Ding L, Yu T, et al. Severely low serum magnesium is associated with increased risks of positive anti-thyroglobulin antibody and hypothyroidism: A cross-sectional study. Sci Rep 2018; 8: 9904.
Wang J, Lv S, Chen G, Gao C, He J, Zhong H, et al. Meta-analysis of the association between vitamin D and autoimmune thyroid disease. Nutrients 2015; 7: 2485–98.
Włochal M, Kucharski MA, Grzymisławski M. The effects of vitamins and trace minerals on chronic autoimmune thyroiditis. Journal of Medical Science 2014; 83: 167–72.
K. Vonrad, L. Starka, R. Hampl. Vitamin D and Thyroid Diseases. Physiol. Res. 64 (Suppl. 2): S95-S100, 2015.
Markiewicz-Żukowska R, Naliwajko SK, Bartosiuk E, Sawicka E, Omeljaniuk W, Borawska M. [The content of vitamins in diets of patients with Hashimoto disease]. Bromat Chem Toksykol 2011; 44: 539–543 (Polish).
Mansournia N, Mansournia MA, Saeedi S, Dehghan J. The association between serum 25OHD levels and hypothyroid Hashimoto’s thyroiditis. J Endocrinol Invest 2014; 37: 473–476.
Zhao F, Feng J, Li J, Zhao L, Liu Y, Chen H, et al. Alterations of the Gut Microbiota in Hashimoto’s Thyroiditis Patients. Thyroid 2018; 28: 175–186.
Peng S, Li C, Wang X, Liu X, Han C, Jin T, et al. Increased Toll-Like Receptors Activity and TLR Ligands in Patients with Autoimmune Thyroid Diseases. Front Immunol. 2016; 7: 578.
Luo X, Zheng T, Mao C et, Dong X, Mou X, Xu C, al. Aberrant MRP14 expression in thyroid follicular cells mediates chemokine secretion through the IL-1β/MAPK pathway in Hashimoto’s thyroiditis. Endocr Connect. 2018; 7: 850–858.
Durack J, Lynch SV. The gut microbiome: Relationships with disease and opportunities for therapy. J Exp Med. 2019; 216: 20–40.
Sheflin AM, Melby CL, Carbonero F, Weir TL. Linking dietary patterns with gut microbial composition and function. Gut Microbes 2017; 8: 113–129.
Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metab. 2015; 22: 658–68.
Mani V, Hollis JH, Gabler NK. Dietary oil composition differentially modulates intestinal endotoxin transport and postprandial endotoxemia. Nutr Metab (Lond) 2013; 10: 6.
Jang S, Sun J, Chen P, Lakshman S, Molokin A, Harnly JM, et al. Flavanol-Enriched Cocoa Powder Alters the Intestinal Microbiota, Tissue and Fluid Metabolite Profiles, and Intestinal Gene Expression in Pigs. J Nutr 2016; 146: 673–680.
Cianciosi D, Forbes-Hernandez TY, Afrin S, Gasparrini M, Reboredo-Rodriguez P, Manna PP, et al. Phenolic Compounds in Honey and Their Associated Health Benefits: A Review. Molecules 2018; 23: pii: E2322.
Samarghandian S, Farkhondeh T, Samini F. Honey and Health: A Review of Recent Clinical Research. Pharmacognosy Res. 2017; 9: 121–127.
Costantini L, Molinari R, Farinon B, Merendino N. Impact of Omega-3 Fatty Acids on the Gut Microbiota. Int J Mol Sci. 2017; 18: E2645.
Mason RP, Sherratt SCR. Omega-3 fatty acid fish oil dietary supplements contain saturated fats and oxidized lipids that may interfere with their intended biological benefits. Biochem Biophys Res Commun 2017; 483: 425–429.
Mori K, Nakagawa Y, Ozaki H. Does the gut microbiota trigger Hashimoto’s thyroiditis? Discov Med 2012; 14: 321–326.
Genton L, Cani PD, Schrenzel J. Alterations of gut barrier and gut microbiota in food restriction, food deprivation and protein-energy wasting. Clin Nutr 2015; 34: 341–349.
Asik M, Gunes F, Binnetoglu E, Eroglu M, Bozkurt N, Sen H, Akbal E, Bakar C, Beyazit Y, Ukinc K. Decrease in TSH levels after lactose restriction in Hashimoto’s thyroiditis patients with lactose intolerance. Endocrine. 2014 Jun; 46(2): 279–84. doi:10.1007/s12020-013-0065-1.
Asik M, Gunes F, Binnetoglu E, Eroglu M, Bozkurt N, Sen H, et al. Decrease in TSH levels after lactose restriction in Hashimoto’s thyroiditis patients with lactose intolerance. Endocrine 2014; 46: 279–284.
Ratajczak AR, Moszak M, Grzymisławski M. [Dietary recommendations for hypothyroidism and Hashimoto’s disease]. Piel Zdr Publ 2017; 7: 305–311 (Polish).
Ozkan C, Yetkin I. Coeliac disease and autoimmune thyroid diseases. Med-Science 2016; 5: 1055–1058.
Sharma BR, Joshi AS, Varthakavi P, Chadha MD, Bhagwat NM, Pawal PS. Coeliac autoimmunity in autoimmune thyroid disease is highly prevalent with a questionable impact. Indian J Endocrinol Meta 2016; 20: 97–100.
Lambert J, Vojdani A. Correlation of Tissue Antibodies and Food Immune Reactivity in Randomly Selected Patients Specimens. J Clin Cell Immunol 2017; 8: 521.
Kharrazian D, Herbert M, Vojdani A. Immunological reactivity using monoclonal and polyclonal antibodies of autoimmune thyroid target sites with dietary proteins. J Thyroid Res 2017; 2017: 4354723.
Wawrzeńczyk A, Bartuzi Z. [Cross-reactivity syndromes]. Alergia Astma Immunologia 2018; 23(2): 64–66 (Polish).
Vici G, Belli L, Biondi M, Polzonetti V. Gluten free diet and nutrient deficiencies: A review. Clin Nutr. 2016; 35: 1236–1241.
Dorota Szostak-Węgierek, Tomasz Bednarczuk The validity of gluten-free diet in Hashimoto’s thyroiditis: statement of the Expert Committee of the Section of Medical Dietetics of the Polish Society for Parenteral, Enteral Nutrition and Metabolism (POLSPEN) Postępy Żywienia Klinicznego Nr 2/2018 (47) Tom 14.
Journals System - logo
Scroll to top