RESEARCH PAPER
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Cadmium (Cd) is a toxic mineral element with a long half-life that causes excessive accumulation in tissues, especially the kidney. It influences cell development, proliferation, and death by activating intracellular signalling pathways. Currently, treatment options include chelation agents and antioxidant therapy. Researchers are investigating natural compounds that might protect against Cd-induced toxicity while providing less negative effects. The aim of the study is to look into the protective properties of bovine milk whey protein hydrolysates against Cd-induced toxicity in in vitro studies.

Material and methods:
The study was performed by testing different concentrations of CdCl2 on fibroblast cell culture after the addition of different concentrations of whey peptides using the Electric Cell-substrate Impedance Sensing (ECIS) assay, in order to study intermediate-term exposure (20–25 hrs).

Results:
By using the ECIS test, it was found that the higher the CdCl2 concentration, the lower the impedance value, which indicates a decrease in cell viability. At the same time, it was found that the use of whey proteins in concentrations of 0.5%, 0.8% and 1.2% had a protective effect on cells treated with toxic cadmium. It could be stated that protein peptides present in the medium may be responsible for binding cadmium, preventing its interaction with the fibroblast cell membrane and cell organelles.

Conclusions:
The study provided evidence that bovine whey proteins have a protective effect against CdCl2 toxicity. This could be due to its enhanced antioxidant defence and metal chelating properties; therefore, whey proteins could be a useful nutritional supplement to reduce Cd toxicity.
REFERENCES (34)
1.
Genchi G, S S, Graziantono L, Carocci A, Catalano A. The E ff ects of Toxicity. Int J Environ Res Public Health. 2020;17(Cd):1–24.
 
3.
Mishra S, Bharagava RN, More N, et al. Heavy Metal Contamination: An Alarming Threat to Environment and Human Health. In: Sobti RC, Arora NK, Kothari R, editors. Environmental Biotechnology: For Sustainable Future. Springer Singapore; 2019:103–125. doi:10.1007/978-981-10-7284-0_5.
 
4.
Rahimzadeh MR, Rahimzadeh MR, Kazemi S, Moghadamnia AA. Cadmium toxicity and treatment: An update. Casp J Intern Med. 2017;8(3):135–145. doi:10.22088/cjim.8.3.135.
 
5.
Mugnano M, Memmolo P, Miccio L, et al. In vitro cytotoxicity evaluation of cadmium by label-free holographic microscopy. J Biophotonics. 2018;11(12):1–8. doi:10.1002/jbio.201800099.
 
6.
Hossein-Khannazer N, Azizi G, Eslami S, et al. The effects of cadmium exposure in the induction of inflammation. Immunopharmacol Immunotoxicol. 2020;42(1):1–8. doi:10.1080/08923973.2019.1697284.
 
7.
Rana MN, Tangpong J, Rahman MM. Toxicodynamics of Lead, Cadmium, Mercury and Arsenic-induced kidney toxicity and treatment strategy: A mini review. Toxicol Reports. 2018;5(May):704–713. doi:10.1016/j.toxrep.2018.05.012.
 
8.
Yiğit A, Bielska P, Cais-Sokolińska D, Samur G. Whey proteins as a functional food: Health effects, functional properties, and applications in food. J Am Nutr Assoc. 2023;42(8):758–768. doi:10.1080/27697061.2023.2169208.
 
9.
Çelik K. Whey Every Aspect. Tudás Alapítvány; 2020. https://books.google.pl/books?....
 
10.
KJ. Bioactive Compounds and Milk Peptides for Human Health-A Review. Nov Tech Nutr Food Sci. 2018;1(5). doi:10.31031/ntnf.2018.01.000525.
 
11.
Ulluwishewa D, Mullaney J, Adam K, et al. A bioactive bovine whey protein extract improves intestinal barrier function in vitro. JDS Commun. 2022;3(6):387–392. doi:10.3168/jdsc.2022-0245.
 
12.
Saubenova M, Oleinikova Y, Rapoport A, et al. Bioactive Peptides Derived from Whey Proteins for Health and Functional Beverages. Fermentation. 2024;10(7). doi:10.3390/fermentation10070359.
 
13.
Navas A, Nandkumar A M. Electric Cell-Substrate Impedance Sensing (ECIS) for Analyzing the Effect of Environmental Pollutants – A Study of Diesel Exhaust Nanoparticles. J Environ Sci Public Heal. 2022;06(02):189–203. doi:10.26502/jesph.96120166.
 
14.
Prendecka M, Frankowski J, Sobieszek G, et al. Electric Cell Substrate Impedance Sensing (ECIS) as a unique technique in cancer metastasis research. J Pre-Clinical Clin Res. 2018;12(4):142–144. doi:10.26444/jpccr/100616.
 
15.
Li J, Ye A, Lee SJ, Singh H. Physicochemical behaviour of WPI-stabilized emulsions in in vitro gastric and intestinal conditions. Colloids Surf B Biointerfaces. 2013;111:80–87. doi:10.1016/j.colsurfb.2013.05.034.
 
16.
Ahamed M, Akhtar MJ, Alhadlaq HA. Influence of silica nanoparticles on cadmium-induced cytotoxicity, oxidative stress, and apoptosis in human liver HepG2 cells. Environ Toxicol. 2020;35(5):599–608. doi:10.1002/tox.22895.
 
17.
Hordyjewska A, Prendecka-Wróbel M, Kurach Ł, et al. Antiproliferative Properties of Triterpenoids by ECIS Method—A New Promising Approach in Anticancer Studies? Molecules. 2022;27(10):3150. doi:10.3390/molecules27103150.
 
18.
Kiran Kumar KM, Naveen Kumar M, Patil RH, et al. Cadmium induces oxidative stress and apoptosis in lung epithelial cells. Toxicol Mech Methods. 2016;26(9):658–666. doi:10.1080/15376516.2016.1223240.
 
19.
Peighambardoust SH, Karami Z, Pateiro M, Lorenzo JM. A review on health-promoting, biological, and functional aspects of bioactive peptides in food applications. Biomolecules. 2021;11(5):1–21. doi:10.3390/biom11050631.
 
20.
González-Olivares LG, Ovando AC, Granados-Benitez AS, Castañeda-Ovando EP, et al. Metal-Binding Capacity of Whey-Natural Peptides: Experimental Study and in vitro FRAP-Antioxidant Activity. Biointerface Res Appl Chem. 2023;13(6):1–13. doi:10.33263/BRIAC136.565.
 
21.
Pihlanto-Leppälä A, Koskinen P, Piilola K, et al. Angiotensin I-converting enzyme inhibitory properties of whey protein digests: concentration and characterization of active peptides. J Dairy Res. 2000;67(1):53–64. doi:10.1017/S0022029999003982.
 
22.
P28 | Bovine milk whey proteins diet supplementation reduce Cd level in liver and kidney of cadmium intoxicated rats. J Vet Pharmacol & Ther. 2023;46:99. doi:10.1111/jvp.13307.
 
23.
Hinnenkamp C, Ismail BP. A proteomics approach to characterizing limited hydrolysis of whey protein concentrate. Food Chem. 2021;350:129235. doi:https://doi.org/10.1016/j.food....
 
24.
Mata L, Sanchez L, Calve M. Cadmium uptake by Caco-2 cells. Effect of some milk components. Chem Biol Interact. 1996;100:277–288.
 
25.
Ianiro G, Niro A, Rosa L, et al. To Boost or to Reset: The Role of Lactoferrin in Energy Metabolism. Int J Mol Sci. 2023;24(21). doi:10.3390/ijms242115925.
 
26.
Mata L, Perez MD, Puyol P, Calvo M. Distribution of Added Lead and Cadmium in Human and Bovine Milk. J Food Prot. 1994;58(3):305–309.
 
27.
He H, Chen X, Li X, Yang K, et al. Lactoferrin alleviates spermatogenesis dysfunction caused by bisphenol A and cadmium via ameliorating disordered autophagy, apoptosis and oxidative stress. Int J Biol Macromol. 2022;222(PA):1048–1062. doi:10.1016/j.ijbiomac.2022.09.260.
 
28.
Garg G, Singh S, Singh AK, Rizvi SI. Whey protein concentrate supplementation protects rat brain against aging-induced oxidative stress and neurodegeneration. Appl Physiol Nutr Metab = Physiol Appl Nutr Metab. 2018;43(5):437–444. doi:10.1139/apnm-2017–0578.
 
29.
Ajarem J, Allam AA, Ebaid H, et al. Neurochemical, structural and neurobehavioral evidence of neuronal protection by whey proteins in diabetic albino mice. Behav Brain Funct. 2015;11(1):1–8. doi:10.1186/s12993–015–0053–0.
 
30.
Al-Malki AL, Barbour EK, Ea H, et al. Signaling Pathways Regulated By Brassicaceae Extract Inhibit the Formation of Advanced Glycated End Products in Rat Brain. African J Tradit Complement Altern Med AJTCAM. 2017;14(2):234–240. doi:10.21010/ajtcam.v14i2.25.
 
31.
Al-Zharani M, Almuqri E, Mubarak M, et al. Antioxidant Effects of Whey Protein as a Dietary Supplement To Alleviate Cadmium-Induced Oxidative Stress in Male Wistar Rats. Curr Res Nutr Food Sci. 2024;12(1):147–156. doi:10.12944/CRNFSJ.12.1.12.
 
32.
Wegener J. Label-Free Monitoring of Cells in Vitro. Vol 2.; 2019. https://link.springer.com/10.1....
 
33.
Kociubiński A, Wilczyńska A, Mazurek PA, et al. Impedance Measurement for the Monitoring of In Vitro Cells Cultured in the Presence of Electromagnetic Waves. Appl Sci. 2023;13(3). doi:10.3390/app13031267.
 
34.
Moghtaderi H, Sadeghian G, Abiri H, et al. Electric cell-substrate impedance sensing in cancer research: An in-depth exploration of impedance sensing for profiling cancer cell behavior. Sensors and Actuators Reports. 2024;7(February):100188. doi:10.1016/j.snr.2024.100188.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top