How much do we know about genetic predisposition of hypersensitivity pneumonitis?
More details
Hide details
Department of Clinical Immunology, Medical University, Lublin, Poland
Department of Pneumonology, Oncology and Allergology, Medical University, Lublin, Poland
Corresponding author
Barbara Mackiewicz   

Department of Pneumonology, Oncology and Allergology, Medical University ofLublin, 20-954, Lublin, Poland
Ann Agric Environ Med. 2022;29(2):306-308
Introduction and Objective:
Hypersensitivity pneumonitis (HP) is an interstitial lung disease caused by iterative inhalation of various environmental agents. The clinical presentation is variable, acute HP commonly presents an inflammatory response, whereas the development and clinical consequences in chronic HP may be similar to IPF (idiopathic pulmonary fibrosis). The aim of the study is to present the latest discoveries regarding the genetic predisposition of HP.

Material and Methods:
The appropriate scientific literature was reviewed and analyzed.

Studies have discovered relevant gene polymorphisms in HP, including polymorphisms in the major histocompatibility complex in the metalloproteinases genes. The length of the peripheral blood leukocyte telomere has been investigated and discovered to be important. Recently, the need to study miRNAs in ILD (interstitial lung disease) has been highlighted.

Exposed HP developed only in some people and a genetic susceptibility significantly increases the risk. Further more current studies on large groups of patients are needed to learn more about the genetic predisposition and risk factors of HP.

Vasakova M, Morell F, Walsh S, Leslie K, Raghu G. Hypersensitivity pneumonitis: perspectives in diagnosis and management. Am J Respir Crit Care Med. 2017; 196: 680–689.
Pereira CA, Gimenez A, Kuranishi L, Storrer K. Chronic hypersensitivity pneumonitis. J Asthma Allergy. 2016; 9: 171–181. doi:10.2147/JAA.S81540.
Chan AL, Juarez MM, Leslie KO, Ismail HA, Albertson TE. Bird fancier’s lung: a state-of-the-art review. Clin Rev Allergy Immunol. 2012; 43(1–2): 69–83.
Johansson E, Boivin GP, Yadav JS. Early immunopathological events in acute model of mycobacterial hypersensitivity pneumonitis in mice. J Immunotoxicol. 2017; 14: 77–88.
Ley B, Newton CA, Arnould I, et al. The MUC5B promoter polymorphism and telomere length in patients with chronic hypersensitivity pneumonitis: an observational cohort-control study. Lancet Respir Med. 2017; 5(8): 639–647. doi:10.1016/S2213-2600(17)30216-3.
Ley B, Torgerson DG, Oldham JM, et al. Rare protein-altering telomere-related gene variants in patients with chronic hypersensitivity pneumonitis. Am J Respir Crit Care Med. 2019; 200(9): 1154–1163. doi:10.1164/rccm.201902-0360OC.
Santiago-Ruiz L, Buendía-Roldán I, Pérez-Rubio G, et al. MMP2 Polymorphism affects plasma matrix metalloproteinase (MMP)-2 levels, and correlates with the decline in lung function in hypersensitivity pneumonitis positive to autoantibodies patients. Biomolecules. 2019; 9(10): 574. doi:10.3390/biom9100574.
Kondoh K, Usui Y, Ohtani Y, Inase N, Miyake S, Yoshizawa Y. Proinflammatory and anti-inflammatory cytokine gene polymorphisms in hypersensitivity pneumonitis. J Med Dent Sci. 2006; 53(1): 75–83.
Furukawa H, Oka S, Shimada K, et al. Genetics of interstitial lung disease: vol de nuit (night flight). Clinical Medicine Insights: Circulatory, Respiratory and Pulmonary Medicine 2015; 9(S1)1–7. doi: 10.4137/CCRPRPM.S23283.
Falfan-Valencia R, Camarena A, Pineda CL. Genetic susceptibility to multicase hypersensitivity pneumonitis is associated with the TNF-238 GG genotype of the promoter region and HLA-DRB1*04 bearing HLA haplotypes. Respir Med. 2014; 108(1): 211–217.
Aquino-Galvez A, Camarena A, Montano M, et al. Transporter associated with antigen processing (TAP) 1 gene polymorphisms in patients with hypersensitivity pneumonitis. Exp Mol Pathol. 2008; 84(2): 173–177. doi:10.1016/j.yexmp.2008.01.002.
Kiszałkiewicz J, Piotrowski W, Brzeziańska-Lasota E. Signaling pathways and their miRNA regulators involved in the etiopathology of idiopathic pulmonary fibrosis (IPF) and hypersensitivity pneumonitis (HP). Adv Respir Med. 2017; 85(3): 169–178. doi:10.5603/ARM.2017.0029.
Croston TL, Lemons AR, Beezhold DH, Green BJ. MicroRNA regulation of host immune responses following fungal exposure. Front Immunol. 2018; 9:170. Published 2018 Feb 7. doi:10.3389/fimmu.2018.00170.
Journals System - logo
Scroll to top