BRIEF COMMUNICATION
 
KEYWORDS
TOPICS
ABSTRACT
The Microorganism Detection System (SDM) is a new solution using artificial intelligence, unique on the international scale, to correctly identify and count microorganisms, with particular emphasis on specificlisted microorganisms (Document of Standard PN-EN ISO 17516–2014:11) – Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus. SDM enables the use of algorithms for microscopic image interpretation in the microbiological assessment of the cosmetics in accordance with the standard, providing an answer to whether the tested product complies with the standard. Apart from the software part of SDM, an integral part of the system is an innovative methodology for preparing a cosmetic sample for testing. The experiments confirm the high sensitivity and specificity of the SDM method, its repeatability and, above all, the comparability of the results with the methods of European standards.
ACKNOWLEDGEMENTS
The project was co-financed by the European Union from the European Regional Development Fund under the Intelligent Development programme. The project implemented under the competition 1 / 4.1.4 / 2018 / POIR: ‘Microorganism detection system – SDM’, National Centre for Research and Development.
 
REFERENCES (17)
1.
Norma PN-EN ISO 17516:2014-11: Kosmetyki–Mikrobiologia–Limity mikrobiologiczne.
 
2.
Regulation (EC) No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products. https://eur-lex.europa.eu/eli/... (access: 2021.11.07).
 
3.
Fukushima H, Katsube K, Hata Y, Kishi R, Fujiwara S. Rapid separation and concentration of food-borne pathogens in food samples prior to quantification by viable-cell counting and real-time PCR. Appl Environ Microbiol. 2007; 73(1): 92–100. doi: 10.1128/AEM.01772-06.
 
4.
Pertoft H. Fractionation of cells and subcellular particles with Percoll. J Biochem Biophys Methods. 2000; 44: 1–30. https://doi.org/10.1016/S0165-....
 
5.
Garbacz M, Malec A, Duda-Saternus S, Suchorab Z, Guz Ł, Łagód G. Methods for Early Detection of Microbiological Infestation of Buildings Based on Gas Sensor Technologies. Chemosensors. 2020; 8: 7. doi: 10.3390/chemosensors8010007.
 
6.
Bartholomew JW, Mittwer T. The Gram stain. Bacteriol Rev. 1952; 16(1): 1–29. doi: 10.1128/br.16.1.1-29.1952.
 
7.
Beveridge TJ. Use of the gram stain in microbiology. Biotech Histochem. 2001; 76(3): 111–8.
 
8.
Smith AC, Hussey MA. Gram Stain Protocols. Am Soc Microbiol. 2016.
 
9.
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation, CoRR: http://lmb.informatik.uni-frei... 2015 (access: 2021.11.07).
 
10.
Beucher S. The Watershed Transformation Applied to Image Segmentation, Scanning Microscopy, 1992, https://www.researchgate.net/p... (access: 2021.11.07).
 
11.
Bankhead P, Loughrey MB, Fernández JA, et al. QuPath. Open source software for digital pathology image analysis. Sci Rep. 2017; 7: 16878. doi.org/10.1038/s41598-017-172....
 
12.
Redmon J, Farhadi A. YOLOv3: An Incremental Improvement, CoRR, 2018, https://arxiv.org/pdf/1804.027... (access: 2021.11.07).
 
13.
Chollet F. Xception: Deep Learning with Depthwise Separable Convolutionn, CoRR, 2017 https://arxiv.org/pdf/1610.023... (access: 2021.11.07).
 
14.
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521: 436–444.
 
15.
Alzubaidi L, Zhang J, Amjad I, et al. Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. J Big Data. 2021; 8(1): 53. doi: 10.1186/s40537-021-00444-8.
 
16.
Shrestha YR, Krishna V, von Krogh G. Augmenting Organizational DecisionMaking with Deep Learning Algorithms: Principles, Promises, and Challenges. J Bus Res. 2021; 123: 588–603. https://doi.org/10.1016/j.jbus....
 
17.
Fawcett T. An introduction to ROC analysis. Elsevier; 2005.
 
eISSN:1898-2263
ISSN:1232-1966