REVIEW PAPER
Silver nanoparticles – allies or adversaries?
 
More details
Hide details
1
Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
2
Jan Kochanowski University, Kielce, Poland
3
Independent Laboratory of Molecular Biology, Institute of Rural Health, Lublin, Poland
CORRESPONDING AUTHOR
Irena Szumiel   

Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Warsaw, Poland
 
Ann Agric Environ Med. 2013;20(1):48–54
KEYWORDS
ABSTRACT
Nanoparticles (NP) are structures with at least one dimension of less than 100 nanometers (nm) and unique properties. Silver nanoparticles (AgNP), due to their bactericidal action, have found practical applications in medicine, cosmetics, textiles, electronics, and other fields. Nevertheless, their less advantageous properties which make AgNP potentially harmful to public health or the environment should also be taken into consideration. These nanoparticles are cyto- and genotoxic and accumulate in the environment, where their antibacterial properties may be disadvantageous for agriculture and waste management. The presented study reviews data concerning the biological effects of AgNP in mammalian cells in vitro: cellular uptake and excretion, localization in cellular compartments, cytotoxicity and genotoxicity. The mechanism of nanoparticle action consists on induction of the oxidative stress resulting in a further ROS generation, DNA damage and activation of signaling leading to various, cell type-specific pathways to inflammation, apoptotic or necrotic death. In order to assure a safe application of AgNP, further detailed studies are needed on the mechanisms of the action of AgNP on mammalian cells at the molecular level.
 
REFERENCES (63)
1.
Lim ZZ, Li JE, Ng CT, Yung LY, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin. 2011; 32: 983-990.
 
2.
Talekar M, Kendall J, Denny W, Garg S. Targeting of nanoparticles in cancer: drug delivery and diagnostics. Anticancer Drugs. 2011; 22(10): 949-962.
 
3.
Chopra I. The increasing use of silver-based products as antimicrobial agents: a useful development or a cause for concern? J Antimicrob Chemother. 2007; 59: 587-590.
 
4.
Schrand AM, Dai L, Schlager JJ, Hussain SM. Toxicity testing of nanomaterials. Adv Exp Med Biol. 2012; 745: 58-75.
 
5.
Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2: 544-568.
 
6.
Wiechers JW, Musee N. Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges. J Biomed Nanotechnol. 2010; 6: 408-431.
 
7.
Smita S, Gupta SK, Bartonova A, Dusinska M, Gutleb AC, Rahman Q. Nanoparticles in the environment: assessment using the causal diagram approach. Environ Health. 2012; 11 Suppl 1: S13.
 
8.
Ahamed M, Alsalhi MS, Siddiqui MK. Silver nanoparticle applications and human health. Clin Chim Acta. 2010; 411: 1841-1848.
 
9.
Dhawan A, Pandey A, Sharma V. Toxicity assessment of engineered nanomaterials: resolving the challenges. J Biomed Nanotechnol. 2011; 7: 6-7.
 
10.
Dhawan A, Sharma V. Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem. 2010; 398: 589-605.
 
11.
Kruszewski M, Brzoska K, Brunborg G, Asare N, Dobrzyńska H, Dusinska M, et al. Toxicity of Silver Nanomaterials in Higher Eukaryotes. Adv Mol Toxicol. 2011; 5: 179-218.
 
12.
Singh N, Manshian B, Jenkins GJ, Griffiths SM, Williams PM, Maffeis TG, Wright CJ, Doak SH. NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 2009; 30: 3891- 3914.
 
13.
Snopczynski T, Goralczyk K, Czaja K, Strucinski P, Hernik A, Korcz W, Ludwicki JK. Nanotechnology – possibilities and hazards. Rocz Panstw Zakl Hig. 2009; 60: 101-111 (in Polish).
 
14.
Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepulveda MS. Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine (Lond) 2011; 6: 879-898.
 
15.
Jung WK, Kim SH, Koo HC, Shin S, Kim JM, Park YK, Hwang SY, Yang H, Park YH. Antifungal activity of the silver ion against contaminated fabric. Mycoses 2007; 50: 265-269.
 
16.
Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol. 2008; 74: 2171- 2178.
 
17.
Foldbjerg R, Dang DA, Autrup H. Cytotoxicity and genotoxicity of silver nanoparticles in the human lung cancer cell line, A549. Arch Toxicol. 2011; 85: 743-750.
 
18.
Kawata K, Osawa M, Okabe S. In vitro toxicity of silver nanoparticles at noncytotoxic doses to HepG2 human hepatoma cells. Environ Sci Technol. 2009; 43: 6046-6051.
 
19.
Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J, Ryu DY. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 2009; 23: 1076-1084.
 
20.
Lundqvist M, Stigler J, Elia G, Lynch I, Cedervall T, Dawson KA. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc Natl Acad Sci USA 2008; 105: 14265-14270.
 
21.
Monopoli MP, Bombelli FB, Dawson KA. Nanobiotechnology: nanoparticle coronas take shape. Nat Nanotechnol. 2011; 6: 11-12.
 
22.
Monopoli MP, Walczyk D, Campbell A, Elia G, Lynch I, Baldelli BF, Dawson KA. Physical-Chemical Aspects of Protein Corona: Relevance to in Vitro and in Vivo Biological Impacts of Nanoparticles. J Am Chem Soc. 2011; 133(8): 2525-2534.
 
23.
Walczyk D, Bombelli FB, Monopoli MP, Lynch I, Dawson KA. What the cell “sees” in bionanoscience. J Am Chem Soc. 2010; 132: 5761-5768.
 
24.
Kwon JT, Hwang SK, Jin H, Kim DS, Minai-Tehrani A, Yoon HJ, Choi M, Yoon TJ, Han DY, Kang YW, Yoon BI, Lee JK, Cho MH. Body distribution of inhaled fluorescent magnetic nanoparticles in the mice. J Occup Health 2008; 50: 1-6.
 
25.
Asharani PV, Hande MP, Valiyaveettil S. Anti-proliferative activity of silver nanoparticles. BMC Cell Biol. 2009; 10: 65.
 
26.
Greulich C, Diendorf J, Gessmann J, Simon T, Habijan T, Eggeler G, Schildhauer TA, Epple M, Koller M. Cell type-specific responses of peripheral blood mononuclear cells to silver nanoparticles. Acta Biomater. 2011; 7: 3505-3514.
 
27.
Marano F, Hussain S, Rodrigues-Lima F, Baeza-Squiban A, Boland S. Nanoparticles: molecular targets and cell signalling. Arch Toxicol. 2011; 85(7): 733-741.
 
28.
Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Koller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater. 2011; 7: 347-354.
 
29.
Vanwinkle BA, de Mesy Bentley KL, Malecki JM, Gunter KK, Evans IM, Elder A, Finkelstein JN, Oberdorster G, Gunter TE. Nanoparticle (NP) uptake by type I alveolar epithelial cells and their oxidant stress response. Nanotoxicology 2009; 3: 307-318.
 
30.
Park EJ, Yi J, Kim Y, Choi K, Park K. Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism. Toxicol In Vitro. 2010; 24: 872-878.
 
31.
Lankoff A, Sandberg WJ, Wegierek-Ciuk A, Lisowska H, Refsnes M, Sartowska B, Schwarze PE, Meczynska-Wielgosz S, Wojewodzka M, Kruszewski M. The effect of agglomeration state of silver and titanium dioxide nanoparticles on cellular response of HepG2, A549 and THP-1 cells. Toxicol Lett. 2012; 208: 197-213.
 
32.
Arora S, Jain J, Rajwade JM, Paknikar KM. Cellular responses induced by silver nanoparticles: In vitro studies. Toxicol Lett. 2008; 179: 93-100.
 
33.
Hsin YH, Chen CF, Huang S, Shih TS, Lai PS, Chueh PJ. The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett. 2008; 179: 130-139.
 
34.
Gopinath P, Gogoi SK, Sanpui P, Paul A, Chattopadhyay A, Ghosh SS. Signaling gene cascade in silver nanoparticle induced apoptosis. Colloids Surf B Biointerfaces 2010; 77: 240-245.
 
35.
Kim TH, Kim M, Park HS, Shin US, Gong MS, Kim HW. Size-dependent cellular toxicity of silver nanoparticles. J Biomed Mater Res A. 2012; 100(4): 1033-1043.
 
36.
Rosas-Hernandez H, Jimenez-Badillo S, Martinez-Cuevas PP, GraciaEspino E, Terrones H, Terrones M, Hussain SM, Ali SF, Gonzalez C. Effects of 45-nm silver nanoparticles on coronary endothelial cells and isolated rat aortic rings. Toxicol Lett. 2009; 191: 305-313.
 
37.
van Montfort RL, Congreve M, Tisi D, Carr R, Jhoti H. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B. Nature. 2003; 423(6941): 773-777.
 
38.
Asharani PV, Low Kah MG, Hande MP, Valiyaveettil S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano. 2009; 3: 279-290.
 
39.
Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager JJ. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol In Vitro. 2005; 19(7): 975-983.
 
40.
Kim HR, Kim MJ, Lee SY, Oh SM, Chung KH. Genotoxic effects of silver nanoparticles stimulated by oxidative stress in human normal bronchial epithelial (BEAS-2B) cells. Mutat Res. 2011; 726(2): 129-135.
 
41.
Mei N, Zhang Y, Chen Y, Guo X, Ding W, Ali SF, Biris AS, Rice P, Moore MM, Chen T. Silver nanoparticle-induced mutations and oxidative stress in mouse lymphoma cells. Environ Mol Mutagen. 2012; 53(6): 409-419.
 
42.
Carlson C, Hussain SM, Schrand AM, Hess KL, Jones RL, Schlager JJ. Unique cellular interaction of silver nanoparticles: size-dependent generation of reactive oxygen species. J Phys Chem B. 2008; 112: 13608- 13619.
 
43.
Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, Choi J, Hyun JW. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett. 2011; 201: 92-100.
 
44.
Hudecová A, Kusznierewicz B, Rundén-Pran E, Magdolenová Z, Hasplová K, Rinna A, et al. Silver nanoparticles induce premutagenic DNA oxidation that can be prevented by phytochemicals from Gentiana asclepiadea. Mutagenesis. 2012; 27: 759-769.
 
45.
Hudecová A, Kusznierewicz B, Hašplová K, Huk A, Magdolenová Z, Miadoková E, Gálová E, Dušinská M. Gentiana asclepiadea exerts antioxidant activity and enhances DNA repair of hydrogen peroxideand silver nanoparticles-induced DNA damage. Food Chem Toxicol. 2012; 50: 3352-359.
 
46.
Miura N, Shinohara Y. Cytotoxic effect and apoptosis induction by silver nanoparticles in HeLa cells. Biochem Biophys Res Commun. 2009; 390(3): 733-737.
 
47.
Hackenberg S, Scherzed A, Kessler M, Hummel S, Technau A, Froelich K, Ginzkey C, Koehler C, Hagen R, Kleinsasser N. Silver nanoparticles: Evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett. 2011; 201: 27-33.
 
48.
Asharani P, Sethu S, Lim HK, Balaji G, Valiyaveettil S, Hande MP. Differential regulation of intracellular factors mediating cell cycle, DNA repair and inflammation following exposure to silver nanoparticles in human cells. Genome Integr. 2012; 3: 2.
 
49.
Cho KA, Suh JW, Lee KH, Kang JL, Woo SY. IL-17 and IL-22 enhance skin inflammation by stimulating the secretion of IL-1beta by keratinocytes via the ROS-NLRP3-caspase-1 pathway. Int Immunol. 2012; 24(3): 147-158.
 
50.
Hu Y, Mao K, Zeng Y, Chen S, Tao Z, Yang C, Sun S, Wu X, Meng G, Sun B. Tripartite-motif protein 30 negatively regulates NLRP3 inflammasome activation by modulating reactive oxygen species production. J Immunol. 2010; 185(12): 7699-7705.
 
51.
Menu P, Mayor A, Zhou R, Tardivel A, Ichijo H, Mori K, Tschopp J. ER stress activates the NLRP3 inflammasome via an UPR-independent pathway. Cell Death Dis. 2012; 3: e261.
 
52.
Tschopp J. Mitochondria: Sovereign of inflammation? Eur J Immunol. 2011; 41(5): 1196-1202.
 
53.
Christen V, Fent K. Silica nanoparticles and silver-doped silica nanoparticles induce endoplasmatic reticulum stress response and alter cytochrome P4501A activity. Chemosphere 2012; 87(4): 423-434.
 
54.
Zhang R, Piao MJ, Kim KC, Kim AD, Choi JY, Choi J, Hyun JW. Endoplasmic reticulum stress signaling is involved in silver nanoparticles-induced apoptosis. Int J Biochem Cell Biol. 2012; 44(1): 224-232.
 
55.
Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R. The comet assay: topical issues. Mutagenesis. 2008; 23: 143-151.
 
56.
Flower NA, Brabu B, Revathy M, Gopalakrishnan C, Raja SV, Murugan SS, Kumaravel TS. Characterization of synthesized silver nanoparticles and assessment of its genotoxicity potentials using the alkaline comet assay. Mutat Res. 2012; 742(1-2): 61-65.
 
57.
Asare N, Instanes C, Sandberg WJ, Refsnes M, Schwarze P, Kruszewski M, Brunborg G. Cytotoxic and genotoxic effects of silver nanoparticles in testicular cells. Toxicology. 2012; 291(1-3): 65-72.
 
58.
Wojewódzka M, Lankoff A, Dusinska M, Brunborg G, Czerwińska J, Iwaneńko T, Stępkowski T, Szumiel I, Kruszewski M. Treatment with silver nanoparticles delays repair of X-ray induced DNA damage in HepG2 cells. Nukleonika. 2011; 56: 29-33.
 
59.
Rogakou EP, Boon C, Redon C, Bonner WM. Megabase chromatin domains involved in DNA double-strand breaks in vivo. J Cell Biol. 1999; 146(5): 905-916.
 
60.
Fenech M. The micronucleus assay determination of chromosomal level DNA damage. Methods Mol Biol. 2008; 410: 185-216.
 
61.
Bonassi S, El-Zein R, Bolognesi C, Fenech M. Micronuclei frequency in peripheral blood lymphocytes and cancer risk: evidence from human studies. Mutagenesis. 2011; 26(1): 93-100.
 
62.
Migliore L, Coppede F, Fenech M, Thomas P. Association of micronucleus frequency with neurodegenerative diseases. Mutagenesis. 2011; 26(1): 85-92.
 
63.
Foldbjerg R, Irving ES, Hayashi Y, Sutherland D, Thorsen K, Autrup H, Beer C. Global gene expression profiling of human lung epithelial cells after exposure to nanosilver. Toxicol Sci. 2012; 24: 145-57.
 
eISSN:1898-2263
ISSN:1232-1966