Introduction and objective:
Electromagnetic radiation interactions with living systems have been one of determining factors in biological evolution. This study investigates the effect of 900 MHz radiofrequency (RF) electromagnetics field (EMF) exposure of eggs on the development of Dermacentor reticulatus larvae. The basic objective was to determine whether the 900 MHz RF-EMF has the potential to influence the size of the body of the hatched larvae of D. reticulatus ticks.

Material and methods:
To this aim, eggs from 3 fully engorged females of D. reticulatus were included in the test procedure. Altogether four groups of eggs were designated which included eggs from each female. We used RF-EMF frequency of 900 MHz. Eggs were exposed to EMF for different time periods (30, 60 and 90 minutes) in dark, electromagnetically shielded anechoic chamber. After the irradiation eggs were allowed to hatch in climatic chamber. Randomly selected 200 larval individuals were measured to get basic morphological records. Four body traits including the total body length (TBL), length of gnathosoma with scutum (GSL), the total body width (TBW), and the width of basis capituli (BCW) were measured.

The D. reticulatus larvae hatched from eggs exposed for 60 minutes, had demonstrably larger dimensions of all measured body traits not only as a control unexposed group but also as other experimental groups.

The study shows, particularly, that artificial EMF that is used in smartphone technology impacts seriously D. reticulatus larvae development.

This work was financially supported by the Slovak Research and Development Agency project number APVV-17-0372 and VEGA 2/0113/18. We thank Barbora Majláthová for graphical design of figure 1 and Iveta Oreničová for help in the laboratory.
Vargová B, Majlath I, Kurimský J, Cimbala R, Pipova N, Živčák J, Tryjanowski P, Peťko B, Džmura J, Ižariková G, Majláthová V. Morphometric analysis – effect of the radiofrequency interface of electromagnetic field on the size of hatched Dermacentor reticulatus larvae. Ann Agric Environ Med. Doi: 10.26444/aaem/139289
Adey WR. Biological effects of electromagnetic fields. J Cell Biochem. 1993;51(4):410–416. doi:10.1002/jcb.2400510405.
Calvente I, Fernandez MF, Villalba J, Olea N, Nuñez MI. Exposure to electromagnetic fields (non-ionizing radiation) and its relationship with childhood leukemia: A systematic review. Sci Total Environ. 2010;408(16):3062–3069. doi:10.1016/j.scitotenv.2010.03.039.
Balmori A. Anthropogenic radiofrequency electromagnetic fields as an emerging threat to wildlife orientation. Sci Total Environ. 2015;518–519:58–60. doi:10.1016/j.scitotenv.2015.02.077.
Bhatt CR, Thielens A, Billah B, et al. Assessment of personal exposure from radiofrequency-electromagnetic fields in Australia and Belgium using on-body calibrated exposimeters. Environ Res. 2016;151:547–563. doi:10.1016/j.envres.2016.08.022.
Cucurachi S, Tamis WLM, Vijver MG, Peijnenburg WJGM, Bolte JFB, de Snoo GR. A review of the ecological effects of radiofrequency electromagnetic fields (RF-EMF). Environ Int. 2013;51:116–140. doi:10.1016/j.envint.2012.10.009.
Balmori A. Electromagnetic pollution from phone masts. Effects on wildlife. Pathophysiology. 2009;16(2):191–199. doi:10.1016/j.pathophys.2009.01.007.
Odemer R, Odemer F. Effects of radiofrequency electromagnetic radiation (RF-EMF) on honey bee queen development and mating success. Sci Total Environ. 2019;661:553–562. doi:10.1016/j.scitotenv.2019.01.154.
Patenkovic A, Savic T, Kenig B, Kurbalija-Novicic Z, Andjelkovic M. The impact of extremely low frequency electromagnetic field (50Hz, 0.25 mT) on fitness components and wing traits of Drosophila subobscura. Genetika. 2015;47(3):967–982. doi:10.2298/GENSR1503967P.
Mirabolghasemi G, Azarnia M. Developmental changes in Drosophila melanogaster following exposure to alternating electromagnetic fields. Bioelectromagnetics. 2002;23(6):416–420. doi:10.1002/bem.10042.
Beuthner U. On the sterile male release technique: sterilization by γ-radiation (60Co) in Amblyomma variegatum (Fabricius, 1794), Hyalomma anatolicum excavatum (Koch, 1844), and Rhipicephalus appendiculatus (Neumann, 1901). Published online 1975. Accessed April 25, 2016. = RN:8310484.
Fernie KJ, Bird DM. Effects of Electromagnetic Fields on Body Mass and Food-Intake of American Kestrels. The Condor. 1999;101(3):616–621. doi:10.2307/1370191.
Gould JL. Magnetic Field Sensitivity in Animals. Annu Rev Physiol. 1984;46(1):585–598. doi:10.1146/
Panagopoulos DJ, Chavdoula ED, Karabarbounis A, Margaritis LH. Comparison of Bioactivity Between GSM 900 MHz and DCS 1800 MHz Mobile Telephony Radiation. Electromagn Biol Med. 2007;26(1):33–44. doi:10.1080/15368370701205644.
Vácha M, Půžová T, Kvíćalová M. Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol. 2009;212(21):3473–3477. doi:10.1242/jeb.028670.
Vácha M, Kvíčalová M, Půžová T. American cockroaches prefer four cardinal geomagnetic positions at rest. Behaviour. 2010;147(4):425–440. doi:10.1163/000579509X12580965484148.
Földvári G, Široký P, Szekeres S, Majoros G, Sprong H. Dermacentor reticulatus: a vector on the rise. Parasit Vectors. 2016;9:314. doi:10.1186/s13071–016–1599-x.
Schöl H, Sieberz J, Göbel E, Gothe R. Morphology and structural organization of Gené’s organ in Dermacentor reticulatus (Acari: Ixodidae). Exp Appl Acarol. 2001;25(4):327–352. doi:10.1023/A:1017963531560.
Korotkov I, La B, Ms B, VIu P. [The impact of electromagnetic radiation at microwave frequency (9.8 HhZ)on the embryonic and postembryonic development of the tick Hyalomma asiaticum (Acarina, Ixodidae)]. Med Parazitol (Mosk). 1999;(1):38–42.
Korotkov IS, Burenkov MS, Burenkova LA, Pichugin VI, Chunikhin SP, Engovatov VV. [The reaction of the tick Hyalomma asiaticum (Acarina, Ixodidae) to 1- to 4-GHz microwaves]. Med Parazitol (Mosk). 1996;(4):28–31.
Vargová B, Kurimský J, Cimbala R, et al. Ticks and radio-frequency signals: behavioural response of ticks (Dermacentor reticulatus) in a 900 MHz electromagnetic field. Syst Appl Acarol. 2017;22(5):683–693. doi:10.11158/saa.22.5.7.
Vargová B, Majláth I, Kurimský J, et al. Electromagnetic radiation and behavioural response of ticks: an experimental test. Exp Appl Acarol. 2018;75(1):85–95. doi:10.1007/s10493–018–0253-z.
Salzburg Resolution on Mobile Telecommunication Base Stations, 2000 International Conference on Cell Tower Siting Linking Science & Public Health“, Salzburg, Austria, June 7–8, 2000).
Buczek A, Buczek L, Kuśmierz A, Olszewski K, Stanko M. [Morphometric features of tarsus in Dermacentor reticulatus (Fabricius, 1794) (Acari: Ixodida: Ixodidae) larvae from Polish and Slovakian populations]. Wiad Parazytol. 2001;47(3):291–295.
Keskin A, Simsek E, Bursali A, Keskin A. Morphological abnormalities in ticks (Acari: Ixodidae) feeding on humans in Central Black Sea region, Turkey. Zoomorphology. 2016;135(2):167–172. doi:10.1007/s00435–016–0306-y.
Shuaib YA, Isaa MH, Ezz-Eldin MI-E, Abdalla MA, Bakhiet AO, Chitimia-Dobler L. Morphological abnormalities in ticks (Acari: Ixodidae) collected from domestic animal species in Sudan. Exp Appl Acarol. 2020;82(1):161–169. doi:10.1007/s10493–020–00534-x.
Buczek A. Experimental Teratogeny in the Tick Hyalomma marginatum marginatum (Acari: Ixodida: Ixodidae): Effect of High Humidity on Embryonic Development. J Med Entomol. 2000;37(6):807–814. doi:10.1603/0022–2585–37.6.807.
Alekseev AN, Jensen PM, Dubinina HV, Smirnova LA, Makrouchina NA, Zharkov SD. Peculiarities of behaviour of taiga (Ixodes persulcatus) and sheep (Ixodes ricinus) ticks (Acarina: Ixodidae) determined by different methods. Folia Parasitol (Praha). 2000;47(2):147–153. doi:10.14411/fp.2000.029.
Zharkov SD, Dubinina HV, Alekseev AN, Jensen PM. Anthropogenic pressure and changes in Ixodes tick populations in the Baltic region of Russia and Denmark. Acarina. 2000;8(2):137–141.
Sshuchinova LD. Occurrence of ixodic ticks with exoskeleton anomalies and their infection with tick-borne encephalitis in Altai Republic. Ross Parazitol Zhurnal. 2014;(No.2):18–21.
Panagopoulos DDJ, Karabarbounis A, Margaritis LH. Effect of GSM 900-MHz Mobile Phone Radiation on the Reproductive Capacity of Drosophila melanogaster. Electromagn Biol Med. 2004;23(1):29–43. doi:10.1081/JBC-120039350.