RESEARCH PAPER
Molecular aerobiology – Plantago allergen Pla l 1 in the atmosphere
 
More details
Hide details
1
Department of Biodiversity and Environmental Management, Botany, University of León, Spain .
2
ISAC-CNR, Bologna, Italy
3
Allergy Unit, Altollano Clinic, León, Spain
4
R & D Department, Bial-Arístegui, Bilbao, Spain
5
R & D Department, Abelló SA, Madrid, Spain
 
Ann Agric Environ Med. 2014;21(2):282–289
KEYWORDS
ABSTRACT
Introduction:
Exposure to airborne pollen from certain plants can cause allergic disease, but allergens can also be found in non-pollen-bearing fractions of ambient air. This may explain why the allergic response in susceptible patients does not always coincide with the presence and magnitude of airborne pollen counts. Plantago pollen is an important cause of pollinosis in northern Mediterranean countries, but it is difficult to determine its incidence in allergies because Plantago pollen appears in the atmosphere at the same time as grass pollen.

Objective:
The study aimed to investigate the relationship between the atmospheric concentration of Pla l 1 aeroallergen and Plantago pollen, and its incidence in a population group.

Material and Methods:
Pollen was sampled using a Hirst-type volumetric trap (Burkard™) and Burkard Cyclone sampler (Burkard™) for Pla l 1 allergen. Allergen was determined with a Pla l 1-specific ELISA. Serum-specific IgE levels to several plant allergens were measured with the EAST system.

Results:
The aerobiological dynamics of Plantago pollen grains and Pla l 1 did not follow the same trend, whereas the sum of Plantago with some other pollen types showed a more similar behaviour. Of the 118 subjects tested, sera from 52 contained IgE to Plantago pollen, but only 5 were monosensitized.

Conclusions:
The presence of Pla l 1 in the atmosphere depends not only on Plantago pollen but also on the pollen of other species from the Oleaceae family. Knowledge of the behaviour of allergen Pla l 1 in the atmosphere can help understand better asthma exacerbations associated with aeroallergens.

 
REFERENCES (45)
1.
D´Amato G, Spieksma F, Liccardi G, Jäger S, Russo M, Kontou-Fili K, Nikkels, H, Wüthrich B, Bonini S. Pollen related allergy in Europe. Allergy 1998; 53: 567–578.
 
2.
Taylor PL, Flagan RC, Valenta R, Glovsky MM. Release of allergens as respirable aerosols: a link between grass pollen and asthma. J Allergy Clin Immun. 2002; 109: 51–56.
 
3.
Márquez J, Seoane-Camba JA, Suárez-Cervera M. Allergenic and antigenic proteins release in the apertural sporoderm during the activation process in grass pollen grains. Sex Plant Reprod. 1997; 10: 269–278.
 
4.
Pehkonen E, Rantio-Lethimaki A. Variations in airborne pollen antigenic proteins particles caused by meteorologic factors. Allergy 1994; 49: 472–477.
 
5.
Spieksma FTM, Nikkels AH, Dijkman JH. Seasonal appearance of grass pollen allergen in natural, pauci-micronic aerosol of various size fractions; relationship with airborne grass pollen concentration. Clin Exp Allergy. 1995; 25: 234–239.
 
6.
Himly M, Jahn-Schmid B, Dedic A, Kelemen P, Wopfner N, Altmann F, Van Ree R, Briza P, Richter K, Ebner C, Ferreira. Art v 1, the major allergen of mugwort pollen, is a modular glycoprotein with a defensinlike and a hydroxyproline-rich domain. FASEB. 2003;.17: 106–108.
 
7.
Shäppi GF, Taylor PE, Staff IA, Suphioglu C, Knox RB. Source of Bet v 1 loaded inhalable particles from birch revealed. Sex Plant Reprod. 1997; 10: 315–323.
 
8.
Acevedo F, Vesterberg O, Bayard C. Visualization and quantification of birch-pollen allergens directly on air-sampling filters. Allergy 1998; 53: 594–601.
 
9.
Buters TMJ, Kasche A, Weichenmeier I, Schober W, Klaus S, TraildHoffmann C, Menzel A, Huss-Marp J, Krämer U, Behrendt H. Year to year variation in release of Bet v 1 allergen from birch pollen: Evidence for geographical differences between west and south Germany. Int Arch Allergy Immunol. 2008; 145: 122–130.
 
10.
Buters JTM, Weichenmeier I, Ochs S, Pusch G, Kreyling W, Boere AJF, Schober W. The allergen Bet v 1 in fractions of ambient air deviates from birch pollen counts. Allergy 2010; 67(7): 850–858.
 
11.
De Linares C, Díaz de la Guardia C, Nieto Lugilde D, Alba F. Airborne study of grass allergen (Lol p 1) in different-sized particles. Int Arch Allergy Immunol. 2010; 152: 49–57.
 
12.
De Linares C, Nieto Lugilde D, Alba F, Díaz de la Guardia C, Galán C, Trigo MM. Detection of airborne allergen (Ole e 1) in relation to Olea europaea pollen in S Spain. Clin Exp Allergy. 2007; 37: 125–132.
 
13.
Moreno-Grau S, Elvira Rendueles B, Moreno J, García-Sánchez N, Vergara N, Asturias JA, Arilla C, Ibarrola I, Seoane-Camba JA, SuárezCervera M. Correlation between Olea europaea and Parietaria judaica pollen counts and quantification of their major allergens Ole e 1 and Par j 1-Par j 2. Ann Allerg Asthma Im. 2006; 96: 858–864.
 
14.
D´Amato G, Gentili M, Russo M, Mistrello G, Saggese M, Liccardi G, Falagiani P. Detection of Parietaria judaica airborne allergenic activity: comparison between immunochemical and morphological methods including clinical evaluation. Clin Exp Allergy. 1994; 24: 566–574.
 
15.
Fernández-González D, González-Parrado Z, Valencia Barrera RM, Mandrioli P. Determinazione degli allergeni del platano in atmosfera. G.E.A. 2009; 5(1): 95–97.
 
16.
Fernández-González D, González-Parrado Z, Vega-Maray AM, Valencia Barrera RM, Camazón-Izquierdo B, De Nuntiis P, Mandrioli P. Platanus pollen allergen, Pla a 1: quantification in the atmosphere and influence on a sensitizing population. Clin Exp Allergy. 2010; 40: 1701–1708.
 
17.
Watson SH, Constable DW. Allergenic significance of Plantago polle. In: D´Amato G, Spieksma FThM, Bonini S. Allergenic pollen and pollinosis in Europe, Oxford, Blackwell Scientific Publications, 1991. p. 132–134.
 
18.
Calabozo B, Barber D, Polo F. Reactividad cruzada entre los pólenes de Plantago lanceolata y Olea europaea. Allergol Inmunol Clin. 2002; 18(3): 125–126.
 
19.
Huertas AJ, Mozota JM, Gracía-Cervantes AM. Relación entre la sensibilización a pólenes de palmera, Salsola y Plantago. Allergol Inmunol Clin. 2003; 18(3): 122.
 
20.
Krilis S, Baldo BA, Basten. Detailed analysis of allergen specific IgE responses in 341 allergic patients. Associations between allergens and between allergen groups and clinical diagnoses. Aust NZ J Med. 1985; 15: 421–426.
 
21.
D´Amato G, Lobefalo G. Allergenic pollens in the southern Mediterranean area. J. Allergy Clin Immunol. 1989; 83: 116–122.
 
22.
Subiza J, Jerez M, Jiménez JA, Narganes MJ, Cabrera M, Valera S, Subiza E. Clinical aspects of allergic disease. Allergenic pollen and pollinosis in Madrid. J Allergy Clin Immun. 1995; 96: 15–23.
 
23.
García-González JJ, Vega-Chicote JM, Rico P, Moscoso del Prado JM, Carmona MJ, Miranda A, Pérez-Estrada M, Martin S, Cervera JA, Acebes JM. Prevalence of Atopy in students from Málaga, Spain. Ann Allerg Asthma Im. 1998; 180: 237–244.
 
24.
Quirce Gancedo S: Asma. In: Sociedad Española de Alergología e inmunología Clínica (SEAIC) y Schering-Plough. Alergológica 2005. Factores epidemiológicos, clínicos y socioeconómicos de las enfermedades alérgicas en España. Egraf, S.A., Madrid, 2006.p.133–160 (in Spanish).
 
25.
Calabozo B, Duffort O, Carpizo JA, Barber D, Polo F. Monoclonal antibodies against the major allergen of Plantago lanceolata pollen, Pla l 1: affinity chromatography purification of the allergen and development of an ELISA method for Pla l 1 measurement. Allergy 2001; 56: 429–435.
 
26.
Hirst JM. An automatic volumetric spore-trap. Ann Appl Biol. 1952; 39: 257–265.
 
27.
Galán Soldevilla C, Cariñanos González P, Alcázar Teno P, Domínguez Vilches E. Spanish Aerobiology Network (REA): Management and quality manual. Servicio de Publicaciones Universidad de Córdoba, 2008.
 
28.
Emberlin J. Analysis of allergens on airborne particles. Progress and problems. In: Bergman K Ch. 3 Europäisches pollenflug-symposium, vorträge and Berichte. Düsseldorf: Vereinigte Verlagsanstalten GmbH, 1995.p. 48–62.
 
29.
Takahashi Y, Ohashi T, Nagoya T, Sakaguchi M, Yasueda H, Nitta H. Possibility of real-time measurement of an airborne Cryptomeria japonica pollen allergen based on the principle of surface plasmon resonance. Aerobiologia 2001; 17: 313–318.
 
30.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 277: 680–685.
 
31.
Towbin H, Staehelin I, Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: Procedure and some applications. Proc Natl Acad Sci USA. 1979; 76: 4350–4354.
 
32.
Cabrera M, Martínez-Cócera C, Fernández Caldas E, Carnés-Sánchez J, Boluda L, Tejada J, Subiza JI, Subiza J, Jerez M. Trisetum paniceum (Wild Oast) pollen counts and aeroallergens in the ambient air of Madrid, Spain. Int Arch Allergy Immunol. 2002; 128: 123–129.
 
33.
Dinis AM, Baptista F, Pereira Coutinho A. Is the quantity of orbicules released by Dactylis glomerata and Cynosurus echinatus (Poaceae) big enough to play an allergenic role? Grana. 2007; 46: 140–147.
 
34.
Lombardero M, Obispo T.M., Calabozo B, Lezaun A, Polo F, Barber D. Cross-reactivity between olive and other species. Role of Ole e 1-related proteins. Allergy. 2002; 57(71): 29–34.
 
35.
Castro AJ, Alché JD, Calabozo B, Rodríguez-García MI, Polo F. Pla l 1 and Ole e 1 pollen allergens share common epitopes and similar ultrastructural localization. J Investig Allergol Clin Immunol. 2007; 17(1): 93–99.
 
36.
Weber RW. Cross-reactivity of pollen allergens: impact on allergen immunotherapy. Ann Allerg Asthma Im. 2007; 99: 203–212.
 
37.
Varis S, Reiniharju J, Santanen A, Ranta H, Pulkkinen P. The size and germinability of Scots pine pollen in different temperatures in vitro. Grana. 2011; 50(2): 129–135.
 
38.
Suárez-Cervera M, Asturias JA, Vega-Maray A, Castells T, LópezIglesias C, Ibarrola I, Arilla MC, Gabarayeba N, Seoane-Camba JA. The role of allergenic proteins Pla a 1 and Pla a 2 in the germination of Platanus acerifolia pollen grains. Sex Plant Reprod. 2005; 18: 101–112.
 
39.
Grote M, Valenta R, Reichelt R. Abortive pollen germination: A mechanism of alllergen release in birch, alder, and hazel revealed by immunogold electron microscopy. J Allergy Clin Immun. 2003; 111: 1017–1023.
 
40.
Pope FD. Pollen grains are efficient cloud condensation nuclei. Environmental Research Letters doi:10.1088/1748-9326/5/4/044015.
 
41.
Shea KM, Truckner RT, Weber RW, Peden DB. Climate change and allergic disease. J Allergy Clin Immun. 2008; 122 (3): 442–453.
 
42.
Busse WW, Redd CE, Hoehme JH. Where is the allergic reaction in ragweed asthma? II: Demonstration of ragweed antigen in airborne particles smaller than pollen. J Allergy Clin Immun. 1972; 50: 289–293.
 
43.
Solomon WR, Burge HA, Muilenberg ML. Allergen carriage by atmospheric aerosol, I: Ragweed pollen determinants in smaller micronic fractions. J Allergy Clin Immun. 1983; 72: 443–447.
 
44.
Rantio-Lehtimäki A, Viander M, Koivikko A. Airborne birch pollen antigens in different particles sizes. Clin Exp Allergy. 1994; 24: 23–28.
 
45.
Nakamura Y, Maguchi S, Oridate N, Takagi D, Furuta Y, Fukuda S. Plantago lanceolata (English plantain) pollinosis in Japan. Auris Nasus Larynx. 2005; 32: 251–256.
 
eISSN:1898-2263
ISSN:1232-1966