RESEARCH PAPER
Microbiological and molecular monitoring for bovine tuberculosis in the Polish population of European bison (Bison bonasus)
 
More details
Hide details
1
Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, University of Life Sciences (SGGW), Warsaw, Poland
2
Department of Microbiology, National Veterinary Research Institute, Puławy, Poland
3
Department of Microbiology, National Tuberculosis Reference Laboratory, National Tuberculosis and Lung Diseases Research Institute, Warsaw, Poland
4
County Veterinary Inspectorate, Sanok, Poland
5
General Veterinary Inspectorate, Warsaw, Poland
6
Department of Animal Genetics and Conservation, Institute of Animal Sciences, University of Life Sciences (SGGW), Warsaw, Poland
CORRESPONDING AUTHOR
Anna Didkowska   

Department of Food Hygiene and Public Health Protection, Institute of Veterinary Medicine, University of Life Sciences (SGGW), Nowoursynowska 166, 02-787 Warsaw, Poland
 
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
In recent years, bovine tuberculosis (BTB) has become one of the major health hazards facing the European bison (EB, Bison bonasus), a vulnerable species that requires active protection, including regular and effective health monitoring. Monitoring of zoonotic disease in wildlife is also an important part of public health protection. The aim of the study was to determine whether BTB still influences the EB population in Poland.

Material and methods:
During 2017–2019, mandibular, retropharyngeal and mediastinal lymph nodes were collected from 90 EB during post-mortem examination, and then cultivated on Lowenstein-Jensen and Stonebrink media. Isolated strains were subjected to molecular analysis to determine the species, spoligotype and MIRU-VNTR pattern.

Results:
Lesions were found in lymph nodes originating from eight EB (8.89%). Positive microbiological cultures for mycobacteria were obtained in samples from six (6.67%) EB. The isolated strains were identified as Mycobacterium caprae (material from four EB) and atypical mycobacteria (material from two EB). For M. caprae strains spoligotype M. bovis 4_CA 1600 was identified and the MIRU-VNTR pattern was identified as 345751355413232.

Conclusions:
It is recommended that this potentially dangerous disease should be monitored in EB via a comprehensive strategy based on a combination of microbiological and molecular methods. Such monitoring will protect the health of both animals and humans

ACKNOWLEDGEMENTS
The work was supported by the project “Complex project of European bison conservation by State Forests”, which is financed by the Forest Found (Poland), contract no OR.271.3.10.2017.
Didkowska A, Orłowska B, Krajewska-Wędzina M, Augustynowicz-Kopeć E, Brzezińska S, Żygowska M, Wiśniewski J, Kaczor S, Welz M, Olech W, Anusz K. Microbiological and molecular monitoring for bovine tuberculosis in the Polish population of European bison (Bison bonasus). Ann Agric Environ Med. doi: doi: 10.26444/aaem/130822
 
REFERENCES (52)
1.
Olech W, 2018 (IUCN SSC Bison Specialist Group). Bison bonasus. The IUCN Red List of Threatened Species, e.T2814A9484719; 2018.
 
2.
Klich D, Olech W, Cielniak K. A complex project for the conservation of European bison in Poland by State Forests, European Bison Conservation Newsletter 2017;10:11–20.
 
3.
Klich D, Olech W, Łopucki R, et al. Community attitudes to the European bison Bison bonasus in areas where its reintroduction is planned and in areas with existing populations in northeastern Poland. Eur J Wild Res. 2018; 64: 61.
 
4.
Olech W, Klich D, Perzanowski K. Development of a new action plan for the European bison. Oryx 2019; 53: 214–214.
 
5.
Bielecki W, Amarowicz J, Hławiczka M, et al. Monitoring zdrowia populacji żubrów jako element ochrony gatunku. European Bison Conservation Newsletter 2014: 17; 43–50.
 
6.
Klich D, Łopucki R, Stachniuk A, et al. Pesticides and conservation of large ungulates: health risk to European bison from plant protection products as a result of crop depredation. PLoS One. 2020; 15: e0228243.
 
7.
Krzysiak MK, Larska M, Jabłoński A, et al. Zakaźne i inwazyjne zagrożenia zdrowia i życia żubrów (Bison bonasus) w XX wieku. Życie Weterynaryjne 2017; 92: 654–657.
 
8.
Rodríguez S, Bezos J, Romero B, et al. Spanish network on surveillance and monitoring of animal tuberculosis. Mycobacterium caprae infection in livestock and wildlife, Spain. Emerg Infect Dis. 2011; 17: 532–535.
 
9.
Palmer MV. Mycobacterium bovis: Characteristics of Wildlife Reservoir Hosts. Transbound Emerg Dis. 2013; 60(Suppl. 1): 1–13.
 
10.
Zimpel CK, Brum JS, de Souza Filho AF, et al. Mycobacterium bovis in a European bison (Bison bonasus) raises concerns about tuberculosis in Brazilian captive wildlife populations: a case report. BMC Res Notes. 2017; 10: 91.
 
11.
Müller B, Dürr S, Alonso S, et al. Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis. 2013; 19: 899–908.
 
12.
Torres-Gonzalez P, Cervera-Hernandez ME, Martinez-Gamboa A, et al. Human tuberculosis caused by Mycobacterium bovis: a retrospective comparison with Mycobacterium tuberculosis in a Mexican tertiary care centre, 2000–2015. BMC Infect Dis. 2016; 16: 657.
 
13.
Orłowska B, Augustynowicz-Kopeć E, Krajewska M, et al., Mycobacterium caprae transmission to free-living grey wolves (Canis lupus) in the Bieszczady mountains in southern Poland. Eur J Wildl. Res. 2017; 63: 1–5.
 
14.
Krajewska M, Lipiec M, Zabost A, et al. Bovine tuberculosis in a wild boar (Sus scrofa) in Poland. J Wildl Dis. 2014; 50: 1001–1002.
 
15.
Prakasha SR, Suresh G, D’Sa IP, et al. Mapping the pattern and trends of extrapulmonary tuberculosis. J Glob Infect Dis. 2013; 5: 54–59.
 
16.
Ganchua SKC, Cadena AM, Maiello P, et al. Lymph nodes are sites of prolonged bacterial persistence during Mycobacterium tuberculosisinfection in macaques. PLoS Pathog. 2018; 14: e1007337. doi: 10.1371/journal.ppat.1007337.
 
17.
Krajewska M, Orłowska B, Anusz K, et al. Gruźlica bydlęca w hodowli żubrów w Smardzewicach. Życie Weterynaryjne 2016; 91: 50–53.
 
18.
Radulski Ł, Lipiec M, Krajewska-Wędzina M, et al. Gruźlica bydlęca u zwierząt dzikich oraz wolno żyjących – badania laboratoryjne 2008–2018. Życie Weterynaryjne 2019; 94: 51–53.
 
19.
Żurawski C, Lipiec M. Przypadek uogólnionej gruźlicy u żubra. Med Wet. 1997; 53: 9–92.
 
20.
Welz M. 2010. The epizootic situation among livestock and the wildlife in the area of Bieszczady Mountains considering the Mycobacterium bovis infections. PhD Dissertation. University of Life Sciences, Warsaw.
 
21.
Brewczyński P, Welz M. Threat of tuberculosis of European bison in the Bieszczady. European Bison Conservation Newsletter 2011; 4: 63–70.
 
22.
Welz M, Anusz K, Salwa A, et al. Bovine tuberculosis in European bison in the Bieszczady region. Med Wet. 2005; 61: 441–444.
 
23.
Krajewska M, Kozińska M, Orłowska B, et al. Mycobacterium bovisu żubra w Puszczy Boreckiej, „Żubry w Krainie Dinozaurów”, 8–9 September 2016. Conference Materiale.
 
24.
Didkowska A, Krajewska-Wędzina M, Orłowska B, et al. Further epidemiological investigation of tuberculosis in European bison (Bison bonasus), European Bison Conservation Newsletter 2018; 11: 43–48.
 
25.
Miller M, Buss P, Hofmeyr J, et al. Antemortem diagnosis of Mycobacterium bovis infection in free-ranging African lions (Panthera leo) and implications for transmission. J Wildl Dis. 2015; 51: 493–497.
 
26.
Anusz K, Orłowska B, Krajewska-Wędzina M, et al. Ante-mortem and post-mortem tuberculosis diagnostics in three European Bison (Bison bonasus caucasicus) from the enclosure in Bukowiec in the Bieszczady National Park in Poland. Med Wet. 2017; 73: 642–646.
 
27.
Viljoen IM, Sylvester TT, Parsons SDC, et al. Performance of the tuberculin skin test in Mycobacterium bovis-exposed and -unexposed African lions (Panthera leo). J Wildl Dis. 2019; 55(3): 537–543. doi: 10.7589/2018-06-163.
 
28.
Roos EO, Olea-Popelka F, Buss P, et al. Measuring antigen-specific responses in Mycobacterium bovis-infected warthogs (Phacochoerus africanus) using the intradermal tuberculin test. BMC Vet Res. 2018; 14(1): 360. doi: 10.1186/s12917-018-1685-8.
 
29.
Buzdugan SN, Chambers MA, Delahay RJ, et al. Quantitative interferon-gamma responses predict future disease progression in badgers naturally infected with Mycobacterium bovis. Epidemiol and Infect. 2017; 145: 3204–3213.
 
30.
Bernitz N, Clarke C, Roos EO, et al. Detection of Mycobacterium bovisinfection in African buffaloes (Syncerus caffer) using QuantiFERON®-TB Gold (QFT) tubes and the Qiagen cattletype® IFN-gamma ELISA. Vet Immunol Immunopathol. 2018; 196: 48–52.
 
31.
Chileshe J, Roos EO, Goosen WJ, et al. An interferon-gamma release assay for the diagnosis of the Mycobacterium bovis infection in white rhinoceros (Ceratotherium simum). Vet Immunol Immunop. 2019; 217: 109931. doi: 10.1016/j.vetimm.2019.109931.
 
32.
Higgitt RL, Schalkwyk OLV, de Klerk-Lorist LM, et al. An interferon gamma release assay for the detection of immune sensitization to Mycobacterium bovis in african wild dogs (Lycaon pictus). J Wildl Dis. 2019; 55: 529–536.
 
33.
Lyashchenko KP, Greenwald R, Esfandiari J, et al. Animal-side serologic assay for rapid detection of Mycobacterium bovis infection in multiple species of free-ranging wildlife. Vet Microb. 2008; 132: 283–292.34.
 
34.
Miller MA, Buss P, Sylvester TT, et al. Mycobacterium bovis in free-ranging lions (Panthera leo) – evaluation of serological and tuberculin skin tests for detection of infection and disease. J Zoo Wildlife Med. 2019; 50: 7–15.
 
35.
Krajewska-Wędzina M, Didkowska A, Sridhara AA, et al. Transboundary tuberculosis: Importation of alpacas infected with Mycobacterium bovis from the United Kingdom to Poland and potential for serodiagnostic assays in detecting tuberculin skin test false-negative animals. Transbound Emerg Dis. 2020, doi: 10.1111/tbed.13471.
 
36.
Olea-Popelka F, Muwonge A, Perera A, et al. Zoonotic tuberculosis in human beings caused by Mycobacterium bovis-a call for action. Lancet 2017; 17: 21–25.
 
37.
Kozińska M, Krajewska-Wędzina M, Augustynowicz-Kopeć E. Mycobacterium caprae – the first case of the human infection in Poland. Ann Agric Environ Med. 2019. doi: 10.26444/aaem/108442.
 
38.
Malama S, Muma JB, Godfroid J. A review of tuberculosis at the wildlife-livestock-human interface in Zambia. Infect Dis Poverty 2013; 2: 13. doi: 10.1186/2049-9957-2-13.
 
39.
Mohamed A. Bovine tuberculosis at the human-livestock-wildlife interface and its control through one health approach in the Ethiopian Somali Pastoralists: A review. One Health 2019; 9: 100113. doi: 10.1016/j.onehlt.2019.100113.
 
40.
Rossi G, Aubry P, Dubé C, et al. The spread of bovine tuberculosis in Canadian shared pastures: Data, model, and simulations. Transbound Emerg Dis. 2019; 66: 562–577.
 
41.
Prodinger WM, Eigentler A, Allerberger F, et al. Infection of red deer, cattle, and humans with Mycobacterium bovis subsp. caprae in western Austria. J Clin Microbiol. 2002; 40(6): 2270–2. doi: 10.1128/jcm.40.6.2270-2272.2002.
 
42.
Schoepf K, Prodinger WM, Glawischnig W, et al. A Two-Years’ Survey on the Prevalence of Tuberculosis Caused by Mycobacterium caprae i n Red Deer (Cervus elaphus) in the Tyrol, Austria. ISRN Vet Sci. 2012 doi: 10.5402/2012/245138.
 
43.
Nigsch A, Glawischnig W, Bagó Z, et al. Mycobacterium caprae infection of red deer in Western Austria–Optimized Use of Pathology Data to Infer Infection Dynamics. Front Vet Sci. 2018; 5: 350. doi: 10.3389/fvets.2018.00350.
 
44.
Dorn-In S, Körner T, Büttner M, et al. Shedding of Mycobacterium caprae by wild red deer (Cervus elaphus) in the Bavarian alpine regions, Germany. Transboundary Emerg Dis. 2020; 67: 308–17. doi: 10.1111/tbed.13353.
 
45.
Steinparzer R, Stanclova G, Bagó Z, et al. Generalized Tuberculosis due to Mycobacterium caprae in a Red Fox (Vulpes vulpes) in Austria. J Wildl Dis. 2020 doi: 10.7589/2019-10-249.
 
46.
Vieira-Pinto M, Alberto J, Aranha J. et al. Combined evaluation of bovine tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) from Central-East Portugal. Eur J Wildl Res.2011; 57: 1189. https://doi.org/10.1007/s10344....
 
47.
Orłowska B, Krajewska-Wędzina M, Augustynowicz-Kopeć E, et al. Epidemiological characterization of Mycobacterium caprae strains isolated from wildlife in the Bieszczady Mountains, on the border of Southeast Poland. BMC Vet Res. 2020; 29: 362. doi: 10.1186/s12917-020-02581-3.
 
48.
Erler W, Martin G, Sachse K, et al. Molecular fingerprinting of Mycobacterium bovis subsp. caprae isolates from central Europe. J Clin Microbiol. 2004; 42(5): 2234–8. doi: 10.1128/jcm.42.5.2234-2238.2004.
 
49.
Fecteau ME. Paratuberculosis in cattle. Vet Clin North Am Food Anim Pract. 2018; 34(1): 209–222. doi: 10.1016/j.cv fa.2017.10.011.
 
50.
Sharma K, Sharma A, Appannanavar S, et al. Mycobacterium avium meningitis in HIVpatients in North India. AIDS Res Hum Retroviruses. 2013; 29: 849–850. doi: 10.1089/AID.2012.0332.
 
51.
Kuntz M, Seidl M, Henneke P. Osteomyelitis because of Mycobacterium xenopi in an immunocompetent child. Ped Infect Dis J. 2016; 35: 110–113. doi: 10.1097/INF.0000000000000933.
 
52.
Stjepanovic MI, Pesut DP, Lesic AR, et al. Pulmonary and vertebral Mycobacterium avium disease in a HIV-negative 71-year-old Man – A Case Report. Infez Med. 2016; 24: 345–348.
 
eISSN:1898-2263
ISSN:1232-1966