REVIEW PAPER
Influence of dioxin intoxication on the human system and possibilities of limiting its negative effects on the environment and living organisms
 
More details
Hide details
1
Department of Nervous System Diseases, Medical University, Wrocław, Poland
2
Department of Conservative Dentistry and Pedodontics, Medical University, Wrocław, Poland
3
Department of Medical Biochemistry, Medical University in Wroclaw, Poland
 
Ann Agric Environ Med. 2014;21(3):518–524
KEYWORDS:
ABSTRACT:
Introduction and objective:
Despite the restrictive legal regulations related to the reduction of dioxins emission, their concentration in the environment is still too high. Mainly, this is related to the illegal utilisation of electronic equipment and combustion of wastes, and also to intensified activity and maintenance of ships, especially in developing countries. The most important remaining source in Europe is the metal industry. Studies on the mechanism of impact of dioxins are still being carried out. This review points at new possibilities for limiting the molecular mechanisms of dioxins activity, inter alia, through the application of high doses of tocopherol and acetylsalicylic acid while treating dioxins intoxication.

Brief description of the state of knowledge:
Apart from the knowledge of dioxins affinity to the aryl hydrocarbon receptor (AhR), the multi-stage radical-form actions and the pro-inflammatory mechanism associated with cyclooxygenase-II enzyme (COX-2) are under intense investigation at the moment. Due to the high affinity of dioxins to animals adipose tissue and their ability to accumulate in it, they can enter the food chain. Furthermore, high dioxin doses can cause poisoning manifested as advanced clinical symptoms, whereas in smaller doses, when cumulated, can cause metabolic changes which are often difficult to associate with their presence. Recently, some serious food contaminations by dioxins have been demonstrated. Sea fish and products from contaminated aqueducts still constitute potential sources of dioxins pollution.

Conclusions:
According to recent studies, dioxins are present in different concentrations in the environment and cause specific and long-time effects. These effects could be limited by the use of tocopherol and acetylsalicylic acid.

 
REFERENCES (83):
1. Viluksela M, Bager Y, Tuomisto JT, Scheu G, Unkila M, Pohjanvirta R, et al. Liver tumor-promoting activity of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive and TCDD-resistant rat strains. Cancer Res. 2000; 60: 6911–6920.
2. Kogevinas M. Epidemiological approaches in the investigation of environmental causes of cancer: the case of dioxins and water disinfection by-products. Environ Health. 2011; 10(1): 3.
3. Boffetta P, Mundt KA, Adami HO, Cole P, Mandel JS. TCDD and cancer: a critical review of epidemiologic studies. Crit Rev Toxicol. 2011; 41: 622–636.
4. Ahlborg UG, Brouwer A, Fingerhut MA, Jacobson JL, Jacobson SW, Kennedy SW, et al. Impact of polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls on human and environmental health, with special emphasis on application of the toxic equivalency factor concept. Eur J Pharmacol. 1992; 228: 179–199.
5. Krauthacker B, Reiner E, Lindstrom G, Rappe C. Residues of polychlorinated-dibenzodioxins, -dibenzofurans and -biphenyls in human milk samples collected in a continental town in Croatia, Yugoslavia. Arh Hig Rada Toksikol. 1989; 40: 9–14.
6. Harris M, Zacharewski T, Safe S. Comparative potencies of Aroclors 1232, 1242, 1248, 1254, and 1260 in male Wistar rats--assessment of the toxic equivalency factor (TEF) approach for polychlorinated biphenyls (PCBs). Fundam Appl Toxicol. 1993; 20: 456–463.
7. Dobrzyński M, Całkosiński I, Przywitowska I, Kobierska-Brzoza J, Czajczyńska-Waszkiewicz A, Sołtan E, et al. The effects of dioxins in environmental pollution on development of teeth disorders. Polish J of Environ Stud. 2009; 18: 319–323.
8. Fiedler H. National PCDD/PCDF release inventories under the Stockholm Convention on Persistent Organic Pollutants. Chemosphere. 2007; 67: 96–108.
9. Van den Berg M, Birnbaum LS, Denison M, De Vito M, Farland W, Feeley M, et al. The 2005 World Health Organization reevaluation of human and Mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci. 2006; 93: 223–241.
10. Liem AKD, Van Zorge JA. Dioxins and related compounds: status and regulatory aspects in selected countries. Environ Sci Pollut Res 1995; 2: 46–56.
11. Liem AK, Furst P, Rappe C. Exposure of populations to dioxins and related compounds. Food Addit Contam. 2000; 17: 241–259.
12. Gaborek BJ, Mullikin JM, Pitrat AT, Cummings L, May LM. Pentagon surface wipe sampling health risk assessment. Toxicol Ind Health. 2001; 17: 254–261.
13. Rayne S. Using exterior building surface films to assess human exposure and health risks from PCDD/Fs in New York City, USA, after the World Trade Center attacks. J Hazard Mater. 2005; 127: 33–39.
14. Rayne S, Ikonomou MG, Butt CM, Diamond ML, Truong J. Polychlorinated dioxins and furans from the World Trade Center attacks in exterior window films from lower Manhattan in New York City. Environ Sci Technol. 2005; 39: 1995–2003.
15. Mai TA, Doan TV, Tarradellas J, de Alencastro LF, Grandjean D. Dioxin contamination in soils of Southern Vietnam. Chemosphere 2007; 67: 1802–1807.
16. Grochowalski A, Chrzaszcz R, Pieklo R, Gregoraszczuk EL. Estrogenic and antiestrogenic effect of in vitro treatment of follicular cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Chemosphere 2001; 43: 823–827.
17. Grochowalski A, Chrząszcz R. Determination of PCDFs/PCDDs in ambient air from Cracow city, Poland. Organohal Comp. 1995; 21: 321–326.
18. Całkosiński I, Stańda M, Borodulin-Nadzieja L, Wasilewska U, Majda J, Cegielski M, et al. The influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin on changes of parenchymal organs structure and estradiol and cholesterol concentration in female rats. Adv Clin Exp Med. 2005; 14: 211–215.
19. Verreault J, Norstrom RJ, Ramsay MA, Mulvihill M, Letcher RJ. Composition of chlorinated hydrocarbon contaminants among major adipose tissue depots of polar bears (Ursus maritimus) from the Canadian high Arctic. Sci Total Environ. 2006; 370: 580–587.
20. Sonne C, Dietz R, Leifsson PS, Born EW, Kirkegaard M, Letcher RJ, et al. Are organohalogen contaminants a cofactor in the development of renal lesions in east Greenland polar bears (Ursus maritimus)? Environ Toxicol Chem. 2006; 25: 1551–1557.
21. Oehme M, Biseth A, Schlabach M, Wiig O. Concentrations of polychlorinated dibenzo-p-dioxins, dibenzofurans and non-ortho substituted biphenyls in polar bear milk from Svalbard (Norway). Environ Pollut. 1995; 90: 401–407.
22. Burton JE, Michalek JE, Rahe AJ. Serum dioxin, chloracne, and acne in veterans of Operation Ranch Hand. Arch Environ Health. 1998; 53: 199–204.
23. Wrbitzky R, Beyer B, Thoma H, Flatau B, Hennig M, Weber A, et al. Internal exposure to polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDDs/PCDFs) of Bavarian chimney sweeps. Arch Environ Contam Toxicol. 2001; 40: 136–140.
24. Baccarelli A, Pfeiffer R, Consonni D, Pesatori AC, Bonzini M, Patterson DG Jr, et al. Handling of dioxin measurement data in the presence of non-detectable values: overview of available methods and their application in the Seveso chloracne study. Chemosphere 2005; 60: 898–906.
25. Neuberger M, Landvoigt W, Derntl F. Blood levels of 2,3,7,8-tetrachloro-dibenzo-p-dioxin in chemical workers after chloracne and in comparison groups. Int Arch Occup Environ Health. 1991; 63: 325–327.
26. Vezina CM, Walker NJ, Olson JR. Subchronic exposure to TCDD, PeCDF, PCB126, and PCB153: effect on hepatic gene expression. Environ Health Perspect. 2004; 112: 1636–1644.
27. Weiss J, Papke O, Bignert A, Jensen S, Greyerz E, Agostoni C, et al. Concentrations of dioxins and other organochlorines (PCBs, DDTs, HCHs) in human milk from Seveso, Milan and a Lombardian rural area in Italy: a study performed 25 years after the heavy dioxin exposure in Seveso. Acta Paediatr. 2003; 92: 467–472.
28. Schwetz BA, Norris JM, Sparschu GL, Rowe UK, Gehring PJ, Emerson JL, et al. Toxicology of chlorinated dibenzo-p-dioxins. Environ Health Perspect. 1973; 5: 87–99.
29. Boverhof DR, Burgoon LD, Tashiro C, Sharratt B, Chittim B, Harkema JR, et al. Comparative toxicogenomic analysis of the hepatotoxic effects of TCDD in Sprague Dawley rats and C57BL/6 mice. Toxicol Sci. 2006; 94: 398–416.
30. Kociba RJ, Schwetz BA. Toxicity of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD). Drug Metab Rev. 1982; 13: 387–406.
31. Całkosiński I, Dobrzyński M, Kobierska-Brzoza J, Majda J, Szymonowicz M, Całkosińska M, et al. The influence of strain, sex and age on selected biochemical parameters in blond serum of Buffalo and Wistar rats Pol J Vet Sci. 2010; 13: 293–299.
32. Rosińczuk-Tonderys J. Effect of dioxin on the structure of the central nervous system after tocopherol and acetylsalicylic acid administration in an experimental model [Habilitation Thesis]. Wroclaw Medical University, Wrocław 2012.
33. Denison MS, Nagy SR. Activation of the aryl hydrocarbon receptor by structurally diverse exogenous and endogenous chemicals. Annu Rev Pharmacol Toxicol. 2003; 43: 309–334.
34. Denison MS, Pandini A, Nagy SR, Baldwin EP, Bonati L. Ligand binding and activation of the Ah receptor. Chem Biol Interact. 2002; 141: 3–24.
35. Franc MA, Pohjanvirta R, Tuomisto J, Okey AB. In vivo up-regulation of aryl hydrocarbon receptor expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in a dioxin-resistant rat model. Biochem Pharmacol. 2001; 62: 1565–1578.
36. Stevens EA, Mezrich JD, Bradfield CA. The aryl hydrocarbon receptor: a perspective on potential roles in the immune system. Immunology. 2009; 127: 299–311.
37. Goryo K, Suzuki A, Del Carpio CA, Siizaki K, Kuriyama E, Mikami Y, et al. Identification of amino acid residues in the Ah receptor involved in ligand binding. Biochem Biophys Res Commun. 2007; 354: 396–402.
38. Tijet N, Boutros PC, Moffat ID, Okey AB, Tuomisto J, Pohjanvirta R. Aryl hydrocarbon receptor regulates distinct dioxin-dependent and dioxin-independent gene batteries. Mol Pharmacol. 2006; 69: 140–153.
39. Bergander L, Wincent E, Rannug A, Foroozesh M, Alworth W, Rannug U. Metabolic fate of the Ah receptor ligand 6-formylindolo[3,2-b]carbazole. Chem Biol Interact. 2004; 149: 151–164.
40. Monteleone I, Rizzo A, Sarra M, Sica G, Sileri P, Biancone L, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract. Gastroenterology. 2011; 141: 237–248, 248–231.
41. Beischlag TV, Luis Morales J, Hollingshead BD, Perdew GH. The aryl hydrocarbon receptor complex and the control of gene expression. Crit Rev Eukaryot Gene Expr. 2008; 18: 207–250.
42. Tanaka G, Kanaji S, Hirano A, Arima K, Shinagawa A, Goda C, et al. Induction and activation of the aryl hydrocarbon receptor by IL-4 in B cells. Int Immunol. 2005; 17: 797–805.
43. Kloser E, Böhmdorfer S, Brecker L, Kählig H, Netscher T, Mereiter K, et al. Synthesis of 5-(Fluorophenyl)tocopherols as Novel Dioxin Receptor Antagonists. European Journal of Organic Chemistry. 2011; 13: 2450–2457.
44. Ivens IA, Loser E, Rinke M, Schmidt U, Neupert M. Toxicity of 2,3,7,8-tet-ra bromodibenzo-p-dioxin in rats after single oral administration. Toxicology. 1992; 73: 53–69.
45. Fowler BA, Lucier GW, Brown HW, McDaniel OS. Ultrastructural changes in rat liver cells following a single oral dose of TCDD. Environ Health Perspect. 1973; 5: 141–148.
46. Calkosinski I, Rosinczuk-Tonderys J, Bazan J, Dzierzba K, Calkosinska M, Majda J, et al. The influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on hematological parameters during experimentally induced pleuritis in rats. Inflammation. 2013; 36: 387–404.
47. Hwang SW. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the biliary excretion of indocyanine green in rat. Environ Health Perspect. 1973; 5: 227–231.
48. Yoon CY, Park M, Kim BH, Park JY, Park MS, Jeong YK, et al. Gene expression profile by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the liver of wild-type (AhR+/+) and aryl hydrocarbon receptor-deficient (AhR-/-) mice. J Vet Med Sci. 2006; 68: 663–668.
49. Kociba RJ, Keyes DG, Beyer JE, Carreon RM, Wade CE, Dittenber DA, et al. Results of a two-year chronic toxicity and oncogenicity study of 2,3,7,8-tetrachlorodibenzo-p-dioxin in rats. Toxicol Appl Pharmacol. 1978; 46: 279–303.
50. Oberemm A, Meckert C, Brandenburger L, Herzig A, Lindner Y, Kalenberg K, et al. Differential signatures of protein expression in marmoset liver and thymus induced by single-dose TCDD treatment. Toxicology 2005; 206: 33–48.
51. Nottebrock C, Riecke K, Kruse M, Shakibaei M, Stahlmann R. Effects of 2,3,7,8-tetrachloro-dibenzo-p-dioxin on the extracellular matrix of the thymus in juvenile marmosets (Callithrix jacchus). Toxicology 2006; 226: 197–207.
52. Riecke K, Grimm D, Shakibaei M, Kossmehl P, Schulze-Tanzil G, Paul M, et al. Low doses of 2,3,7,8-tetrachlorodibenzo- p-dioxin increase transforming growth factor beta and cause myocardial fibrosis in marmosets (Callithrix jacchus). Arch Toxicol. 2002; 76: 360–366.
53. Gilroy DW, Tomlinson A, Willoughby DA. Differential effects of inhibitors of cyclooxygenase (cyclooxygenase 1 and cyclooxygenase 2) in acute inflammation. Eur J Pharmacol. 1998; 355: 211–217.
54. MacDonald CJ, Ciolino HP, Yeh GC. The drug salicylamide is an antagonist of the aryl hydrocarbon receptor that inhibits signal transduction induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Cancer Res. 2004; 64: 429–434.
55. Geusau A, Abraham K, Geissler K, Sator MO, Stingl G, Tschachler E. Severe 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) intoxication: clinical and laboratory effects. Environ Health Perspect. 2001; 109: 865–869.
56. Calkosinski I, Rosinczuk-Tonderys J, Bronowicka-Szydelko A, Dzierzba K, Bazan J, Dobrzynski M, et al. Effect of tocopherol on biochemical blood parameters in pleuritis-induced rats treated with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Ind Health. 2013.
57. Gregoraszczuk EL. Dioxin exposure and porcine reproductive hormonal activity. Cad Saude Publica. 2002; 18: 453–462.
58. Chaffin CL, Trewin AL, Hutz RJ. Estrous cycle-dependent changes in the expression of aromatic hydrocarbon receptor (AHR) and AHR-nuclear translocator (ARNT) mRNAs in the rat ovary and liver. Chem Biol Interact. 2000; 124: 205–216.
59. Chaffin CL, Heimler I, Rawlins RG, Wimpee BA, Sommer C, Hutz RJ. Estrogen receptor and aromatic hydrocarbon receptor in the primate ovary. Endocrine. 1996; 5: 315–321.
60. Gregoraszczuk EL, Zabielny E, Ochwat D. Aryl hydrocarbon receptor (AhR)-linked inhibition of luteal cell progesterone secretion in 2,3,7,8-tetrachlorodibenzo-p-dioxin treated cells. J Physiol Pharmacol. 2001; 52: 303–311.
61. Całkosiński I, Borodulin-Nadzieja L, Stańda M, Wasilewska U, Cegielski M. Influence of a single dose of TCDD on estrogen levels and reproduction in female rats. Med Wet. 2003; 59.
62. Tian Y, Ke S, Thomas T, Meeker RJ, Gallo MA. Transcriptional suppression of estrogen receptor gene expression by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). J Steroid Biochem Mol Biol. 1998; 67: 17–24.
63. Crow KD. Chloracne. Br J Dermatol. 1970; 83: 599–600.
64. Chojkier M, Houglum K, Lee KS, Buck M. Long- and short-term D-alpha-tocopherol supplementation inhibits liver collagen alpha1(I) gene expression. Am J Physiol. 1998; 275: G1480–1485.
65. Singh SU, Casper RF, Fritz PC, Sukhu B, Ganss B, Girard B, Jr., et al. Inhibition of dioxin effects on bone formation in vitro by a newly described aryl hydrocarbon receptor antagonist, resveratrol. J Endocrinol. 2000; 167: 183–195.
66. Vos JG, Moore JA, Zinkl JG. Effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the immune system of laboratory animals. Environ Health Perspect. 1973; 5: 149–162.
67. Rodriguez-Sosa M, Elizondo G, Lopez-Duran RM, Rivera I, Gonzalez FJ, Vega L. Over-production of IFN-gamma and IL-12 in AhR-null mice. FEBS Lett. 2005; 579: 6403–6410.
68. Near RI, Matulka RA, Mann KK, Gogate SU, Trombino AF, Sherr DH. Regulation of preB cell apoptosis by aryl hydrocarbon receptor/transcription factor-expressing stromal/adherent cells. Proc Soc Exp Biol Med. 1999; 221: 242–252.
69. Karras JG, Conrad DH, Holsapple MP. Effects of 2,3,7,8-tetra chloro-dibenzo-p-dioxin (TCDD) on interleukin-4-mediated mechanisms of immunity. Toxicol Lett. 1995; 75: 225–233.
70. Kerkvliet NI, Brauner JA. Flow cytometric analysis of lymphocyte subpopulations in the spleen and thymus of mice exposed to an acute immunosuppressive dose of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Environ Res. 1990; 52: 146–154.
71. Aly HA, Domenech O. Cytotoxicity and mitochondrial dysfunction of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in isolated rat hepatocytes. Toxicol Lett. 2009; 191: 79–87.
72. Andreasen CH, Stender-Petersen KL, Mogensen MS, Torekov SS, Wegner L, Andersen G, et al. Low physical activity accentuates the effect of the FTO rs9939609 polymorphism on body fat accumulation. Diabetes 2008; 57: 95–101.
73. Pohjanvirta R, Korkalainen M, McGuire J, Simanainen U, Juvonen R, Tuomisto JT, et al. Comparison of acute toxicities of indolo [3,2-b]carbazole (ICZ) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) in TCDD-sensitive rats. Food Chem Toxicol. 2002; 40: 1023–1032.
74. Kovacic P, Somanathan R. Integrated approach to immunotoxicity: electron transfer, reactive oxygen species, antioxidants, cell signaling, and receptors. J Recept Signal Transduct Res. 2008; 28: 323–346.
75. Hochstein MS, Jr., Render JA, Bursian SJ, Aulerich RJ. Chronic toxicity of dietary 2,3,7,8-tetrachlorodibenzo-p-dioxin to mink. Vet Hum Toxicol. 2001; 43: 134–139.
76. Lensu S, Miettinen R, Pohjanvirta R, Linden J, Tuomisto J. Assessment by c-Fos immunostaining of changes in brain neural activity induced by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and leptin in rats. Basic Clin Pharmacol Toxicol. 2006; 98: 363–371.
77. Xu G, Li Y, Yoshimoto K, Chen G, Wan C, Iwata T, et al. 2,3,7,8-Tetra-chlorodibenzo-p-dioxin-induced inflammatory activation is mediated by intracellular free calcium in microglial cells. Toxicology 2013.
78. Całkosiński I, Rosińczuk-Tonderys J, Bazan J, Dzierzba K, Całkosińska M, Majda J, et al. The Influence of 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) on Hematological Parameters During Experimentally Induced Pleuritis in Rats. Inflammation 2012.
79. Yang CY, Huang TS, Lin KC, Kuo P, Tsai PC, Guo YL. Menstrual effects among women exposed to polychlorinated biphenyls and dibenzofurans. Environ Res. 2011; 111: 288–294.
80. Weber H, Harris MW, Haseman JK, Birnbaum LS. Teratogenic potency of TCDD, TCDF and TCDD-TCDF combinations in C57BL/6N mice. Toxicol Lett. 1985; 26: 159–167.
81. La Merrill M, Harper R, Birnbaum LS, Cardiff RD, Threadgill DW. Maternal dioxin exposure combined with a diet high in fat increases mammary cancer incidence in mice. Environ Health Perspect. 2010; 118: 596–601.
82. Całkosiński I, Rosińczuk-Tonderys J, Szopa M, Dobrzyński M, Gamian A. High doses of tocopherol in the prevention and potentiation of dioxin in experimental inflammation-potential application. Postepy Hig Med Dosw. 2011; 65: 143–157.
83. Całkosiński I. The course of experimentally induced acute pleuritis with use of nitrogranulogen (NTG) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) [Habilitation Thesis]. Wroclaw Medical University, Wroclaw 2005.
eISSN:1898-2263
ISSN:1232-1966