Observation using thermography of post-operative reaction after fascial manipulation®
More details
Hide details
Department of Rehabilitation, Physiotherapy and Balneotherapy, Rehabilitation and Physiotherapy Institute, Medical University, Lublin, Poland
Department of Rehabilitation, Physiotherapy and Balneotherapy, Balneotherapy Institute, Medical University, Lublin, Poland
Corresponding author
Joanna Fidut-Wrońska   

Medical University in Lublin, Rehabilitation and Physiotherapy Institute, Department of Rehabilitation, Physiotherapy and Balneotherapy, Lublin, Poland, Magnoliowa 2, 20-143, Lublin, Poland
Ann Agric Environ Med. 2019;26(3):468-471
Introduction and objective:
Fascia Manipulation® is one of the methods focusing on the deep fascia. The assumption is that fascial manipulation is carried out on precisely determined points – coordination centres (cc), and on a limited area so as the friction occurring during manipulation would cause a local rise in temperature due to the inflammatory reaction. Rise in temperature influences modification in consistency of elementary matter in the manipulated area, and by the same token causing a decrease in the negative effects of fascia densification which stems from accumulation of hyaluronic acid. The purpose of the research is to prove the thesis that fascial manipulation causes local rise in temperature due to inflammatory reaction.

Material and methods:
For the research, 25 individuals with densification in lower limb area were qualified. They were exposed to a single, 3-minute facial manipulation®. By means of a thermal-imaging camera, changes in the temperature of the body in the examined area were evaluated. The body’s temperature evaluation was carried out 8 times: before the treatment, 5 minutes after the treatment, and, next, 6, 12, 18, 24, 36, 48 hours after the treatment.

The average surface temperature of the treated area before mobilization was 33.4°C. A statistically relevant increase in temperature was already observed 5 minutes after the treatment (increase of 0.5°C; p<0.001). However, the highest temperature was observed 24 hours after mobilization (increase of 2.4°C). The difference between the first and 7 other measurements was statistically relevant (p<0.001).

The statistically relevant increase in temperature under the influence of fascial manipulation® in the treatment area can confirm the occurrence of inflammatory reaction.

Huijing PA. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech. 1990; 32(4): 329–45.
Patel TJ, Lieber RL. Force transmission in skeletal muscle: from actomyosin to external tendons. Exerc Sport Sci Rev. 1997; 25: 321–63.
Hoheisel U, Taguchi T, Treede RD, Mense S. Nociceptive input from the rat thoracolumbar fascia to lumbar dorsal horn neurones. Eur J Pain. 2011; 15(8): 810–5 doi: 10.1016/j.ejpain.2011.01.007.
Stecco C, Gagey O, Belloni A, Pozzuoli A, Porzionato A, Macchi V, et al. Anatomy of the deep fascia of the upper limb. Second part: study of innervation. Morphologie. 2007; 91: 38–43.
Taguchi T, Yasui M, Kubo A, Abe M, Kiyama H, Yamanaka A, Mizumura K. Nociception originating from the crural fascia in rats. Pain. 2013; 154(7): 1103–14. doi: 10.1016/j.pain.2013.03.017 doi: 10.1016/j.pain.2013.03.017.
Tesarz J, Hoheisel U, Wiedenhöfer B, Mense S. Sensory innervation of the thoracolumbar fascia in rats and humans. Neuroscience. 2011; 194: 302–8. doi: 10.1016/j.neuroscience.2011.07.066.
Yahia L, Rhalmi S, Newman N, Isler M. Sensory innervation of human thoracolumbar fascia. An immunohistochemical study. Acta Orthop Scand. 1992; 63(2): 195–7.
Stecco L. Manipulacja powięzi w zespołach bólowych układu ruchu. Odnowa Szczecin, 2010.
Stecco L, Stecco C. Manipulacja powięzi w zespołach bólowych układu ruchu. Część praktyczna. Odnowa Szczecin, 2015.
Pedrelli A, Stecco C, Day JA. Treating patellar tendinopathy with Fascial Manipulation. J Bodyw Mov Ther. 2009; 13: 73–80. doi: 10.1016/j.jbmt.2008.06.002.
Stecco A, Gesi M, Stecco C, Stern R. Fascial components of the myofascial pain syndrome. Curr Pain Headache Rep. 2013; 17(8): 352.
Matteini P, Dei L, Carretti E, Volpi N, Goti A, Pini R. Structural behavior of highly concentrated hyaluronan. Biomacromolecules. 2009; 10(6): 1516–22 doi: 10.1021/bm900108z.
Piehl-Aulin K, Laurent C, Engström-Laurent A, Hellström S, Henriksson J. Hyaluronan in human skeletal muscle of lower extremity: concentration, distribution, and effect of exercise. J Appl Physiol. 1991; 71(6): 2493–8.
Stecco C, Stern R, Porzionato A, Macchi V, Masiero S, Stecco A, De Caro R. Hyaluronan within fascia in the etiology of myofascial pain. Surg Radiol Anat. 2011; 33: 891–896.
Järvinen TA, Józsa L, Kannus P, Järvinen TL, Järvinen M. Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. An immunohistochemical, polarization and scanning electron microscopic study. J Muscle Res Cell Motil. 2002; 23(3): 245–54.
Branchini M, Lopopolo F, Andreoli E, Loreti I, M Marchand A, Stecco A. Fascial Manipulation® for chronic aspecific low back pain: a single blinded randomized controlled trial. Version 2. F1000 Research. 2015; 4: 1208. doi: 10.12688/f1000research.6890.2.
Day JA, Stecco C, Stecco A. Application of Fascial Manipulation & technique in chronic shoulder pain – Anatomical basis and clinical implications. J Bodyw Mov Ther. 2009; 13: 128–135 doi: 10.1016/j.jbmt.2008.04.044.
Pavan PG, Stecco A, Stern R, Stecco C. Painful Connections: Densification Versus Fibrosis of Fascia Curr Pain Headache Rep. 2014; 18: 441.
Stecco A, Stecco C, Raghavan P. Peripheral mechanisms contributing to spasticity and implications for treatment. Curr Phys Med Rehabil Rep. 2014; 2(2): 121–227.
Cowman MK, Schmidt TA, Raghavan P, Stecco A. Viscoelastic Properties of Hyaluronan in Physiological Conditions. F1000 Research. 2015; 5(4): 622. doi: 10.12688/f1000research.6885.1.
Tømmeraas K, Melander C. Kinetics of hyaluronan hydrolysis in acidic solution at various pH values. Biomacromolecules. 2008; 9(6): 1535–40 doi: 10.1021/bm701341y.
Roman M, Chaudhry H, Bukiet B, Stecco A, Findley TW. Mathematical analysis of the flow of hyaluronic acid around fascia during manual therapy motions. J Am Osteopath Assoc. 2013; 113(8): 600–610 doi. 10.7556/jaoa.2013.021.
Langevin HM, Bouffard NA , Fox JR, Palmer BM, Wu J, Iatridis JC, et al. Fibroblast cytoskeletal remodeling contributes to connective tissue tension. J Cell Physiol. 2011; 226(5): 1166–75 doi. 10.1002/jcp.22442.
Całkosiński I, Dobrzyński M, Rosińczuk J, Dudek K, Chrószcz A, Fita K, Dymarek R. The use of infrared thermography as a rapid, quantitative, and noninvasive method for evaluation of inflammation response in different anatomical regions of rats. Biomed Res Int. 2015: 972535. doi: 10.1155/2015/972535.
Wojaczyńska-Stanek K, Marszał E, Krzemień-Gabriel A, Mniszek J, Sitek-Gola M. Monitorowanie termowizyjne terapii przewlekłego zapalenia zatok przynosowych u dzieci leczonych antybiotykami oraz laserem biostymulacyjnym. Acta Inform Med. 2004; 10(3–4): 75–82.
Żmuda S, Zaborowski P, Dąbrowski MM Dulski R. Różnicowanie stanów fizjologicznych i patologicznych tkanek przyzębia w podczerwieni. Mag Stom. 2002; 12(10): 54–58.
Kawali AA. Thermography in ocular inflammation. Indian J Radiol Imaging. 2013; 23: 281–283.
Haluzan D, Davila S, Antabak A, Dobric I, Stipic J, Augustin G, et. al. Thermal changes during healing of distal radius fractures-Preliminary findings. Injury. 2015; 46(6): 103–6. doi: 10.1016/j.injury.2015.10.046.
Capo A, Ismail E, Cardone D, Celletti E, Auriemma M, Sabatini E, et. al. Joint functional impairment and thermal alterations in patients with Psoriatic Arthritis: A thermal imaging study. Microvasc Res. 2015; 102: 86–91. doi: 10.1016/j.mvr.2015.08.008. E.
Lerkvaleekul B, Jaovisidha S, Sungkarat W, Chitrapazt N, Fuangfa P, Ruangchaijatuporn T, et. al. The comparisons between thermography and ultrasonography with physical examination for wrist joint assessment in juvenile idiopathic arthritis. Physiol Meas. 2017; 38(5): 691–700.
Journals System - logo
Scroll to top