REVIEW PAPER
Coronaviruses fusion with the membrane and entry to the host cell
 
More details
Hide details
1
Department of Lung Diseases, Neoplasms and Tuberculosis, Collegium Medicum, Nicolaus Copernicus University, Toruń, Poland
2
Department of Physiology and Pathophysiology, Andrzej Frycz Modrzewski University, Kraków, Poland
3
Department of Pathobiochemistry and Clinical Chemistry, Nicolaus Copernicus University Collegium Medicum, Bydgoszcz, Poland
4
Center for Medical Research and Technology, John Paul II Hospital, Kraków, Poland
CORRESPONDING AUTHOR
Ewelina Wędrowska   

Department of Lung Diseases, Neoplasms and Tuberculosis, Collegium Medicum, Nicolaus Copernicus University in Toruń, M. Curie-Skłodowskiej 9, 85-094, Bydgoszcz, Poland
 
KEYWORDS
TOPICS
ABSTRACT
Coronaviruses (CoVs) are positive-strand RNA viruses with the largest genome among all RNA viruses. They are able to infect many host, such as mammals or birds. Whereas CoVs were identified 1930s, they became known again in 2003 as the agents of the Severe Acute Respiratory Syndrome (SARS). The spike protein is thought to be essential in the process of CoVs entry, because it is associated with the binding to the receptor on the host cell. It is also involved in cell tropism and pathogenesis. Receptor recognition is the crucial step in the infection. CoVs are able to bind a variety of receptors, although the selection of receptor remains unclear. Coronaviruses were initially believed to enter cells by fusion with the plasma membrane. Further studies demonstrated that many of them involve endocytosis through clathrin-dependent, caveolae-dependent, clathrin-independent, as well as caveolae-independent mechanisms. The aim of this review is to summarise current knowledge about coronaviruses, focussing especially on CoVs entry into the host cell. Advances in understanding coronaviruses replication strategy and the functioning of the replicative structures are also highlighted. The development of host-directed antiviral therapy seems to be a promising way to treat infections with SARS-CoV or other pathogenic coronaviruses. There is still much to be discovered in the inventory of pro- and anti-viral host factors relevant for CoVs replication. The latest pandemic danger, originating from China, has given our previously prepared work even more of topicality.
 
REFERENCES (168)
1.
Rehman SU, Shafique L, Ihsan A, Liu Q. Evolutionary Trajectory for the Emergence of Novel Coronavirus SARS-CoV-2. Pathogens 2020; 23,9(3).
 
2.
de Wilde AH, Snijder EJ, Kikkert M, van Hemert MJ. Host Factors in Coronavirus Replication. In: Tripp R, Tompkins S. (eds) Roles of Host Gene and Non-coding RNA Expression in Virus Infection. Current Topics in Microbiology and Immunology Springer, Cham. 2017; 419: 1-42.
 
3.
Hudson CB, Beaudette FR. Infection of the cloaca with the virus of infectious bronchitis. Science 1932; 76, 34.
 
4.
Peiris JSM, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med. 2004; 10: 88–97.
 
5.
Yang D, Leibowitz JL. The structure and functions of coronavirus genomic 3' and 5' ends. Virus Res. 2015; 206:120–133.
 
6.
Peiris JSM, Lai ST, Poon LLM, Guan Y, Yam LYC, Lim W, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 2003; 361: 1319–1325.
 
7.
Rota PA, Oberste MS, Monroe SS, Nix WA, Campagnoli R, Icenogle JP, et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science. 2003; 300: 1394–1399.
 
8.
World-Health-Organization Update 49 - SARS case fatality ratio, incubation period. https://www.who.int/csr/don/4-... (accessed:2020.04.02).
 
9.
COVID-19 coronavirus pandemic. Available online: https://www.worldometers.info/... (accessed: 2020.04.02).
 
10.
Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009; 7: 439–450.
 
11.
Enjuanes L, Almazan F, Sola I, Zuniga S. Biochemical aspects of coronavirus replication and virus-host interaction. Annu Rev Microbiol. 2006; 60: 211–230.
 
12.
Dong S, Sun J, Mao Z, Wang L, Lu Y-L, Li J. A guideline for homology modeling of the proteins from newly discovered betacoronavirus, 2019 novel coronavirus (2019-nCoV). J Med Virol. 2020; 1– 7.
 
13.
Viehweger A, Krautwurst S, Lamkiewicz K, Madhugiri R, Ziebuhr J, Holzer M, Marz M. Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Res. 2019;. 29: 1545-1554.
 
14.
Zuniga S, Sola I, Alonso S, Enjuanes L. Sequence motif involved in the regulation of discontinuous coronavirus subgenomic RNA synthesis. J Virol. 2004; 78: 980–994.
 
15.
Sawicki SG, Sawicki DL, Siddell SG. A contemporary view of coronavirus transcription. J Virol. 2007; 81: 20–29.
 
16.
Srinivasan S, Cui H, Gao Z, Liu M, Lu S, Mkandawire W, Narykov O, Sun M, Korkin D. Structural Genomics of SARS-CoV-2 Indicates Evolutionary Conserved Functional Regions of Viral Proteins. Viruses. 2020; 12(4):360.
 
17.
Oostra M, Te Lintelo E, Deijs M, Verheije M, Rottier P, de Haan C. Localization and membrane topology of coronavirus nonstructural protein 4: Involvement of the early secretory pathway in replication. J Virol. 2007; 81: 12323–12336.
 
18.
Baliji S, Cammer SA, Sobral B, Baker SC. Detection of nonstructural protein 6 in murine coronavirus-infected cells and analysis of the transmembrane topology by using bioinformatics and molecular approaches. J Virol. 2009; 83: 6957–6962.
 
19.
Belouzard S, Millet JK, Licitra BN, Whittaker GR. Mechanisms of coronavirus cell entry mediated by the viral spike protein. Viruses 2012; 4: 1011-1033.
 
20.
Du LY, He YX, Zhou YS, Liu SW, Zheng BJ, Jiang SB. The spike protein of SARS-CoV—a target for vaccine and therapeutic development. Nat Rev Microbiol. 2009; 7: 226–236.
 
21.
Jaimes JA, Whittaker GR. Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virology 2018; 517: 108-121.
 
22.
Duquerroy S, Vigouroux A, Rottier PJ, Rey FA, Bosch BJ. Central ions and lateral asparagine/glutamine zippers stabilize the post-fusion hairpin conformation of the SARS coronavirus spike glycoprotein. Virology 2005; 335: 276–285.
 
23.
Gao J, Lu G, Qi J, Li Y, Wu Y, Deng Y, et al. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J Virol. 2013; 87: 13134–13140.
 
24.
Walls A, Tortorici M, Bosch B. Frenz B, Rottier P, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature 2016; 531: 114–117.
 
25.
Skehel JJ, Wiley DC. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem. 2000; 69: 531–569.
 
26.
Wilson IA, Skehel JJ, Wiley DC. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature. 1981; 289: 366–373.
 
27.
Eckert DM, Kim PS. Mechanisms of viral membrane fusion and its inhibition. Annu Rev Biochem. 2001; 70: 777–810.
 
28.
Harrison SC. Viral membrane fusion. Nat. Struct Mol Biol. 2008; 15: 690–698.
 
29.
Li F, Berardi M, Li WH, Farzan M, Dormitzer PR, Harrison SC. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol. 2006; 80: 6794–6800.
 
30.
Beniac DR, Andonov A, Grudeski E, Booth TF. Architecture of the SARS coronavirus prefusion spike. Nat Struct Mol Biol. 2006; 13: 751–752.
 
31.
Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: Structural and functional characterization of the fusion core complex. J Virol. 2003; 77: 8801–8811.
 
32.
Du L, Zhao G, Yang Y, Qiu H, Wang L, Kou, Z, et al. A conformation-dependent neutralizing monoclonal antibody specifically targeting receptor binding domain in Middle East respiratory syndrome coronavirus spike protein. J Virol. 2014; 88: 7045–7053.
 
33.
Zhou H, Chen Y, Zhang S, Niu P, Qin K, et al. Structural definition of a neutralization epitope on the N-terminal domain of MERS-CoV spike glycoprotein. Nat Commun 2019; 10: 3068.
 
34.
Ying T, Du L, Ju TW, Prabakaran P, Lau CC, Lu L, et al. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol. 2014; 88: 7796–7805.
 
35.
Jiang L, Wang N, Zuo T, Shi X, Poon KM, Wu Y, et al. Potent neutralization of MERS-CoV by human neutralizing monoclonal antibodies to the viral spike glycoprotein. Sci Transl Med. 2014; 6: 234ra59.
 
36.
Walls A, Park Y, Tortorici M, Wall A, McGuire A et al. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein, Cell 2020; 180: 1-12.
 
37.
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, et. Al. ARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; https://doi.org/10.1016/j.cell....
 
38.
Li F, Li WH, Farzan M, Harrison SC. Structure of SARS coronavirus spike receptor-binding domain complexed with receptor. Science 2005; 309: 1864–1868.
 
39.
Lu G, Hu Y, Wang Q, Qi J, Gao F, Li Y, et al. Molecular basis of binding between novel human coronavirus MERS-CoV and its receptor CD26. Nature 2013; 500: 227–231.
 
40.
Wu K, Li WB, Peng G, Li F. Crystal structure of NL63 respiratory coronavirus receptor-binding complexed with its human receptor. Proc Natl Acad Sci. USA. 2009; 106: 19970–19974.
 
41.
Peng GQ, Sun DW, Rajashankar KR, Qian ZH, Holmes KV, Li F. Crystal structure of mouse coronavirus receptor-binding domain complexed with its murine receptor. Proc Natl Acad Sci. USA. 2011; 108: 10696–10701.
 
42.
Casais R, Dove B, Cavanagh D, Britton P. Recombinant avian infectious bronchitis virus expressing a heterologous spike gene demonstrates that the spike protein is a determinant of cell tropism. J Virol. 2003; 9084–9089.
 
43.
van Beurden, S, Berends, A, Krämer-Kühl, A, Spekreijse D, Philipp H, et al. A reverse genetics system for avian coronavirus infectious bronchitis virus based on targeted RNA recombination. Virol J. 2017; 14: 109.
 
44.
Darbyshire JH, Rowell JG, Cook JKA, Peters RW. Taxonomic studies on strains of avian infectious bronchitis virus using neutralisation tests in tracheal organ cultures. Arch Virol. 1979; 61: 227–238.
 
45.
Godeke GJ, de Haan CA, Rossen JW, Vennema H, Rottier PJ. Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein. J Virol. 2000; 74: 1566–1571.
 
46.
Gombold JL, Sutherland RM, Lavi E, Paterson Y, Weiss SR. Mouse hepatitis virus A59-induced demyelination can occur in the absence of CD8 T cells. Microb Pathog. 1995; 18: 211–221.
 
47.
Lavi E, Gilden DH, Highkin MK, Weiss SR. Persistence of mouse hepatitis virus A59 RNA in a slow virus demyelinating infection in mice as detected by in situ hybridization. J Virol.1984; 51: 563–566.
 
48.
Matthews AE, Weiss SR, Paterson Y. Murine hepatitis virus—a model for virus-induced CNS demyelination. J Neurovirol. 2002; 8: 76–85.
 
49.
Navas S, Seo SH, Chua MM, Das Sarma J, Lavi E, Hingley ST, et al. Murine coronavirus spike protein determines the ability of the virus to replicate in the liver and cause hepatitis. J Virol. 2001; 75: 2452–2457.
 
50.
Navas S, Weiss SR. Murine coronavirus-induced hepatitis: JHM genetic background eliminates A59 spike-determined hepatotropism. J Virol. 2003; 77: 4972–4978.
 
51.
Iacono KT, Kazi L, Weiss SR. Both spike and background genes contribute to murine coronavirus neurovirulence. J Virol. 2006; 80: 6834–6843.
 
52.
MacNamara KC, Chua MM, Phillips JJ, Weiss SR. Contributions of the viral genetic background and a single amino acid substitution in an immunodominant CD8 T-cell epitope to murine coronavirus neurovirulence. J Virol. 2005; 79: 9108–9118.
 
53.
Phillips, JJ, Chua MM, Lavi E, Weiss SR. Pathogenesis of chimeric MHV4/MHV-A59 recombinant viruses: the murine coronavirus spike protein is a major determinant of neurovirulence. J Virol. 1999; 73: 7752–7760.
 
54.
Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJ, DiMaio F, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer Nature. 2016; 531: 114-117.
 
55.
Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Tai W, et al. Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state, J Virol. 2018; 92(4): e01556-17.
 
56.
Jaimes JA, Whittaker GR, Feline coronavirus: Insights into viral pathogenesis based on the spike protein structure and function. Virol. 2018; 517:108-121.
 
57.
Hurst KR, Kuo L, Koetzner CA, Ye R, Hsue B, Masters PS. A major determinant for membrane protein interaction localizes to the carboxy-terminal domain of the mouse coronavirus nucleocapsid protein. J Virol. 2005; 79: 13285–13297.
 
58.
Baric RS, Nelson GW, Fleming JO, Deans RJ, Keck JG, Casteel N, et al. Interactions between coronavirus nucleocapsid protein and viral RNAs: implications for viral transcription. J Virol. 1988; 62: 4280–4287.
 
59.
Pasick JM, Kalicharran K, Dales S. Distribution and trafficking of JHM coronavirus structural proteins and virions in primary neurons and the OBL-21 neuronal cell line. J Virol. 1994; 68: 2915–2928.
 
60.
Ye Y, Hauns K, Langland JO, Jacobs BL, Hogue BG. Mouse hepatitis coronavirus A59 nucleocapsid protein is a type I interferon antagonist. J Virol. 2007; 81: 2554–2563.
 
61.
Ding JW, Ning Q, Liu MF, Lai A, Peltekian K, Fung L, et al. Expression of the fgl2 and its protein product (prothrombinase) in tissues during murine hepatitis virus strain-3 (MHV-3) infection. Adv Exp Med Biol. 1998; 440: 609–618.
 
62.
Fan H, Ooi A, Tan YW, Wang S, Fang S, Liu DX, et al. The nucleocapsid protein of coronavirus infectious bronchitis virus: crystal structure of its N-terminal domain and multimerization properties. Structure 2005; 13: 1859–1868.
 
63.
Ning Q, Liu M, Kongkham P, Lai MM, Marsden PA, Tseng J, et al. The nucleocapsid protein of murine hepatitis virus type 3 induces transcription of the novel fgl2 prothrombinase gene. J Biol Chem. 1999; 274: 9930–9936.
 
64.
Zhang X, Zhao X, Dong H, et al. Characterization of Two Monoclonal Antibodies That Recognize Linker Region and Carboxyl Terminal Domain of Coronavirus Nucleocapsid Protein. PLoS One. 2016;11(9):e0163920.
 
65.
Nelson GW, Stohlman SA. Localization of the RNA-binding domain of mouse hepatitis virus nucleocapsid protein. J Gen Virol. 1993; 74: 1975–1979.
 
66.
Huang Q, Yu L, Petros AM, Gunasekera A, Liu Z, Xu N, et al. Structure of the N-terminal RNA-binding domain of the SARS CoV nucleocapsid protein. Biochemistry, 2004; 43: 6059–6063.
 
67.
Jayaram H, Fan H, Bowman BR, Ooi A, Jayaram J, Collisson EW, et al. X-ray structures of the N- and C-terminal domains of a coronavirus nucleocapsid protein: implications for nucleocapsid formation. J Virol. 2006; 80: 6612–6620.
 
68.
Saikatendu KS, Joseph JS, Subramanian V, Neuman BW, Buchmeier MJ, Stevens RC, et al. Ribonucleocapsid formation of severe acute respiratory syndrome coronavirus through molecular action of the N-terminal domain of N protein. J Virol. 2007; 81: 3913–3921.
 
69.
Yu IM, Oldham ML, Zhang J, Chen J. Crystal structure of the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein dimerization domain reveals evolutionary linkage between Coronaviridae and Arteriviridae. J Biol Chem 2006; 281: 17134–17139.
 
70.
Cowley TJ, Long SY, Weiss SR. The murine coronavirus nucleocapsid gene is a determinant of virulence. J Virol. 2010; 84: 1752–1763.
 
71.
Phillips JJ, Chua MM, Rall GF, Weiss SR. Murine coronavirus spike glycoprotein mediates degree of viral spread, inflammation, and virus-induced immunopathology in the central nervous system. Virology 2002; 301: 109–120.
 
72.
Spaan W, Cavanagh D, Horzinek MC. Coronaviruses: structure and genome expression. J Gen Virol. 1988; 69: 2939–2952.
 
73.
Li F. Receptor recognition mechanisms of coronaviruses: a decade of structural studies. J Virol. 2015; 89: 1954-1964.
 
74.
Schultze B, Krempl C, Ballesteros ML, Shaw L, Schauer R, Enjuanes L, et al. Transmissible gastroenteritis coronavirus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J Virol. 1996; 70: 5634–5637.
 
75.
Peng GQ, Xu LQ, Lin YL, Chen L, Pasquarella JR, Holmes KV, et al. Crystal structure of bovine coronavirus spike protein lectin domain. J Biol Chem. 2012; 287: 41931–41938.
 
76.
Bosch BJ, Smits SL, Haagmans B. Membrane ectopeptidases targeted by human coronaviruses. Curr Opin Virol. 2014; 6: 55–60.
 
77.
Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses. 2012; 4:557–80.
 
78.
Bertram S, Dijkman R, Habjan M, Heurich A, Gierer S, Glowacka I, et al. TMPRSS2 activates the human coronavirus 229E for cathepsin-independent host cell entry and is expressed in viral target cells in the respiratory epithelium. J Virol. 2013; 87:6150–60.
 
79.
Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfefferle S, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011; 85:4122–34.
 
80.
Towler P, Staker B, Prasad SG, Menon S, Tang J, Parsons T, et al. X-ray structures reveal a large hinge-bending motion important for inhibitor binding and catalysis. J Biol Chem. 2004; 279: 17996–18007.
 
81.
Keidar S, Kaplan M, Gamliel-Lazarovich A. ACE2 of the heart: from angiotensin I to angiotensin (1-7). Cardiovasc Res. 2007; 73: 463–469.
 
82.
Kuba K, Imai Y, Rao SA, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nat Med. 2005; 11: 875–879.
 
83.
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004; 203:631–7.
 
84.
Mina-Osorio P. The moonlighting enzyme CD13: old and new functions to target. Trends Mol Med. 2008; 14: 361–371.
 
85.
van der Velden VH, Wierenga-Wolf AF, Adriaansen-Soeting PW, Overbeek SE, Moller GM, Hoogsteden HC, et al. Expression of aminopeptidase N and dipeptidyl peptidase IV in the healthy and asthmatic bronchus. Clin Exp Allergy. 1998; 28:110–20.
 
86.
Tan KM, Zelus BD, Meijers R, Liu JH, Bergelson JM, Duke N, et al. Crystal structure of murine sCEACAM1a 1,4: a coronavirus receptor in the CEA family. EMBO J. 2002; 21: 2076–2086.
 
87.
Beauchemin, N.; Draber, P; Dveksler, G.; Gold, P.; Gray-Owen, S.; Grunert, F, et al. Redefined nomenclature for members of the carcinoembryonic antigen family. Exp Cell Res. 1999; 252: 243–249.
 
88.
Hammarström S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 1999; 9: 67–81.
 
89.
Miura TA, Travanty EA, Oko L, Bielefeldt-Ohmann H, Weiss SR, Beauchemin, N, et al. The spike glycoprotein of murine coronavirus MHV-JHM mediates receptorindependent infection and spread in the central nervous systems of Ceacam1a-/- Mice. J Virol. 2008; 82: 755–763.
 
90.
Kameoka J, Tanaka T, Nojima Y, Schlossman SF, Morimoto C. Direct association of adenosine deaminase with a T cell activation antigen, CD26. Science 1993; 261:466–469.
 
91.
Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-peptidase IV from bench to bedside: an update on structural properties, functions, and clinical aspects of the enzyme DPP IV. Crit Rev Clin Lab Sci. 2003; 40:209–94.
 
92.
Dove A. The bittersweet promise of glycobiology. Nat Biotechnol. 2001; 19: 913–917.
 
93.
Ghazarian H, Idoni B, Oppenheimer SB. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 2011; 113: 236–247.
 
94.
Wang N, Shi X, Jiang L, Zhang S, Wang D, Tong P, et al. Structure of MERS-CoV spike receptor-binding domain complexed with human receptor DPP4. Cell Res. 2013; 23: 986–993.
 
95.
Reguera J, Santiago C, Mudgal G, Ordono D, Enjuanes L, Casasnovas JM. Structural bases of coronavirus attachment to host aminopeptidase N and its inhibition by neutralizing antibodies. PLoS Pathog. 2012; 8: e1002859.
 
96.
Raj VS, Mou HH, Smits SL, Dekkers DHW, Muller, MA, Dijkman R. Dipeptidyl peptidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 2013; 495: 251–254.
 
97.
Du L, Zhao G, Kou Z, Ma C, Sun S, Poon VK, et al. Identification of a receptor-binding domain in the S protein of the novel human coronavirus Middle East respiratory syndrome coronavirus as an essential target for vaccine development. J Virol. 2013; 87: 9939–9942.
 
98.
Hofmann H, Pyrc K, van der Hoek L, Geier M, Berkhout B, Pohlmann S. Human coronavirus NL63 employs the severe acute respiratory syndrome coronavirus receptor for cellular entry. Proc Natl Acad Sci USA. 2005; 102: 7988–7993.
 
99.
Li WH, Moore MJ, Vasilieva N, Sui JH, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426: 450–454.
 
100.
Wong SK, Li WH, Moore MJ, Choe H, Farzan M. A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem. 2004; 279: 3197–3201.
 
101.
Lin HX, Fen Y, Wong G, Wang LP, Li B, Zhao XS, et al. Identification of residues in the receptor-binding domain (RBD) of the spike protein of human coronavirus NL63 that are critical for the RBD-ACE2 receptor interaction. J Gen Virol. 2008; 89: 1015–1024.
 
102.
Hofmann H, Simmons G, Rennekamp AJ, Chaipan C, Gramberg T, Heck E, et al. Highly conserved regions within the spike proteins of human coronaviruses 229E and NL63 determine recognition of their respective cellular receptors. J Virol. 2006; 80: 8639–8652.
 
103.
Babcock GJ, Esshaki DJ, Thomas WD, Ambrosino DM. Amino acids 270 to 510 of the severe acute respiratory syndrome coronavirus spike protein are required for interaction with receptor. J Virol. 2004; 78: 4552–4560.
 
104.
Xiao XD, Chakraborti S, Dimitrov AS, Gramatikoff K, Dimitrov DS. The SARS-CoV S glycoprotein: expression and functional characterization. Biochem. Biophys. Res Commun. 2003; 312: 1159–1164.
 
105.
Delmas B, Gelfi J, Lharidon R, Vogel LK, Sjostrom H, Noren O, et al. Aminopeptidase-N is a major receptor for the enteropathogenic coronavirus TGEV. Nature 1992; 357: 417–420.
 
106.
Chan RW, Chan MC, Agnihothram S, Chan LL, Kuok DI, Fong JH, et al. Tropism of and innate immune responses to the novel human betacoronavirus lineage C virus in human ex vivo respiratory organ cultures. J Virol. 2013; 87:6604–14.
 
107.
Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, Haagmans BL, et al. Coronavirus cell entry occurs through the Endo-/Lysosomal pathway in a proteolysis-dependent manner, PLoS Pathog, 2014; 10: e1004502.
 
108.
Authier F, Posner BI, Bergeron JJ. Endosomal proteolysis of internalized proteins. FEBS letters 1996; 389: 55–60.
 
109.
Huotari J, Helenius A. Endosome maturation. EMBO. 2011; 30:3481–3500.
 
110.
Plemper RK. Cell entry of enveloped viruses. Curr Opin Virol., 2011; 1: 92–100.
 
111.
Marsh M, Helenius A. Virus entry: open sesame. Cell. 2006; 124: 729–740.
 
112.
Pelkmans L, Helenius A. Insider information: what viruses tell us about endocytosis. Curr Opin Cell Biol. 2003; 15: 414–422.
 
113.
Sieczkarski SB, Whittaker GR. Dissecting virus entry via endocytosis. J Gen Virol. 2002; 83: 1535-1545.
 
114.
Ng ML, Tan SH, See EE, Ooi EE, Ling AE. Early events of SARS coronavirus infection in vero cells. J Med Virol. 2003; 71: 323-331.
 
115.
Qinfen Z, Jinming C, Xiaojun H, Huanying Z, Jicheng H Ling F, et al. The life cycle of SARS coronavirus in Vero E6 cells. J Med Virol. 2004; 73: 332-337.
 
116.
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndromeassociated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA. 2004; 101: 4240-4245.
 
117.
Yang ZY, Huang Y, Ganesh L, Leung K, Kong WP, Schwartz O, et al. pH-dependent entry of severe acute respiratory syndrome coronavirus is mediated by the spike glycoprotein and enhanced by dendritic cell transfer through DC-SIGN. J Virol. 2004; 78: 5642-5650.
 
118.
Huang IC, Bosch BJ, Li F, Lee KH, Ghiran S, Vasilieva N, et al. SARS coronavirus, but not human coronavirus NL63, utilizes cathepsin L to infect ACE2-expressing cells. J Biol Chem. 2006; 281: 3198-3203.
 
119.
Inoue Y, Tanaka N, Tanaka Y, Inoue S, Morita K, Zhuang M, et al. Clathrin-dependent entry of severe acute respiratory syndrome coronavirus into target cells expressing ACE2 with the cytoplasmic tail deleted. J Virol. 2007; 81: 8722-8729.
 
120.
Sieczkarski SB, Whittaker GR. Characterization of the host cell entry of filamentous influenza virus. Arch Virol. 2005; 150: 1783–1796.
 
121.
Pearse BM, Smith CJ, Owen DJ. Clathrin coat construction in endocytosis. Curr Opin Struct Biol. 2000; 10: 220–228.
 
122.
Sorkin A. Cargo recognition during clathrin-mediated endocytosis: a team effort. Curr Opin Cell Biol. 2004; 16: 392–399.
 
123.
Choi KS, Aizaki H, Lai MM. Murine coronavirus requires lipid rafts for virus entry and cell-cell fusion but not for virus release. J Virol. 2005; 79: 9862–9871.
 
124.
Sieczkarski SB, Whittaker GR. Influenza virus can enter and infect cells in the absence of clathrin-mediated endocytosis. J Virol. 2002; 76: 10455-10464.
 
125.
Heaton NS, Randall G. Multifaceted roles for lipids in viral infection. Trends Microbiol. 2011; 19: 368–375.
 
126.
De Wilde AH, Wannee KF, Scholte FE, Goeman JJ, Ten Dijke P, Snijder EJ, et al. Small interfering RNA screen identifies proviral and antiviral host factors in severe acute respiratory syndrome coronavirus replication, including double-stranded RNA-activated protein kinase and early secretory pathway proteins. J Virol. 2015; 89: 8318–8333.
 
127.
Wang H, Yang P, Liu K, Guo F, Zhang Y, Zhang G, Jiang C. SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway. Cell Res. 2008; 18: 290-301.
 
128.
Simmons G, Reeves JD, Rennekamp AJ, Amberg SM, Piefer AJ, Bates P. Characterization of severe acute respiratory syndromeassociated coronavirus (SARS-CoV) spike glycoprotein-mediated viral entry. Proc Natl Acad Sci USA. 2004; 101: 4240–424.
 
129.
Matsuyama S, Ujike M, Morikawa S, Tashiro M, Taguchi F. Protease-mediated enhancement of severe acute respiratory syndrome coronavirus infection. Proc Natl Acad Sci USA. 2005; 102: 12543–12547.
 
130.
Belouzard S, Chu VC, Whittaker GR. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proc Natl Acad Sci USA. 2009; 106: 5871–5876.
 
131.
Callan RJ, Hartmann FA, West SE, Hinshaw VS. Cleavage of influenza A virus H1 hemagglutinin by swine respiratory bacterial proteases. J Virol. 1997; 71: 7579–7585.
 
132.
Watanabe R, Matsuyama S, Shirato K, Maejima M, Fukushi S, Morikawa S, et al. Entry from the cell surface of severe acute respiratory syndrome coronavirus with cleaved S protein as revealed by pseudotype virus bearing cleaved S protein. J Virol. 2008; 82: 11985–11991.
 
133.
Fackler OT, Peterlin BM. Endocytic entry of HIV-1. Curr Biol. 2000; 10: 1005-1008.
 
134.
Nunes-Correia I, Eulalio A, Nir S, Pedroso de Lima MC. Caveolae as an additional route for influenza virus endocytosis in MDCK cells. Cell Mol Biol Lett. 2004; 9: 47-60.
 
135.
Hagemeijer MC, Rottier PJ, de Haan CA. Biogenesis and dynamics of the coronavirus replicative structures. Viruses. 2012; 4: 3245-3269.
 
136.
Snijder EJ, van der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, et al. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006; 80: 5927–5940.
 
137.
Imbert I, Snijder EJ, Dimitrova M, Guillemot JC, Lécine P, Canard B. The SARS-coronavirus plnc domain of nsp3 as a replication/transcription scaffolding protein. Virus Res. 2008; 133: 136–148.
 
138.
Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6 induce double-membrane vesicles. MBio. 2013; 4: e00524–e00513.
 
139.
Knoops K, Kikkert M, van den Worm SHE, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, et al. SARS-Coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol. 2008; 6: 1957–1974.
 
140.
Ulasli M, Verheije MH, de Haan CA, Reggiori F. Qualitative and quantitative ultrastructural analysis of the membrane rearrangements induced by coronavirus. Cell Microbiol. 2010; 12: 844–861.
 
141.
David-Ferreira JF, Manaker RA. An Electron Microscope Study of the Development of a Mouse Hepatitis Virus in Tissue Culture Cells. J Cell Biol. 1965; 24: 57–78.
 
142.
Deming DJ, Graham RL, Denison MR, Baric RS. Processing of open reading frame 1a replicase proteins nsp7 to nsp10 in murine hepatitis virus strain A59 replication. J Virol. 2007; 81: 10280–10291.
 
143.
Oostra M, Hagemeijer MC, van Gent M, Bekker CP, te Lintelo, EG, Rottier PJ, de Haan CA. Topology and membrane anchoring of the coronavirus replication complex: not all hydrophobic domains of nsp3 and nsp6 are membrane spanning. J Virol. 2008; 82: 12392–12405.
 
144.
Graham RL, Sims AC, Brockway SM, Baric RS, Denison MR. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J Virol. 2005; 79: 13399–13411.
 
145.
Reid CR, Airo AM, Hobman TC. The virus-host interplay: biogenesis of +RNA replication complexes. Viruses. 2015; 7: 4385-4413.
 
146.
Harcourt BH, Jukneliene D, Kanjanahaluethai A, Bechill J, Severson KM, Smith CM, et al. Identification of severe acute respiratory syndrome coronavirus replicase products and characterization of papain-like protease activity. J Virol. 2004; 78: 13600–13612.
 
147.
van der Meer Y, Snijder EJ, Dobbe JC, Schleich S, Denison MR, Spaan WJ, et al. Localization of mouse hepatitis virus nonstructural proteins and RNA synthesis indicates a role for late endosomes in viral replication. J Virol. 1999; 73: 7641–7657.
 
148.
Goldsmith CS, Tatti KM, Ksiazek TG, Rollin PE, Comer JA, Lee WW, et al. Ultrastructural characterization of SARS coronavirus. Emerg Infect Dis. 2004; 10: 320–326.
 
149.
Gosert R, Kanjanahaluethai A, Egger D, Bienz K, Baker SC. RNA Replication of mouse hepatitis virus takes place at double-membrane vesicles. J Virol. 2002; 76: 3697–3708.
 
150.
Spuul P, Balistreri G, Kaariainen L, Ahola T. Phosphatidylinositol 3-kinase-, actin-, and microtubule-dependent transport of Semliki Forest virus replication complexes from the plasma membrane to modified lysosomes. J Virol. 2010; 84: 7543–7557.
 
151.
Hagemeijer MC, Verheije MH, Ulasli M, Shaltiël IA, de Vries LA, Reggiori F, et al. Dynamics of coronavirus replication-transcription complexes. J Virol. 2010; 84: 2134–2149.
 
152.
Reggiori F, Monastyrska I, Verheije MH, Calì T, Ulasli M, Bianchi S, et al. Coronaviruses hijack the LC3-I-positive EDEMosomes, ER-derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe. 2010; 7: 500–508.
 
153.
Kindler E, Jonsdottir HR, Muth D, Hamming OJ, Hartmann R, Rodriguez R, et al. Efficient replication of the novel human betacoronavirus EMC on primary human epithelium highlights its zoonotic potential. MBio. 2013; 4:e00611–12.
 
154.
Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis. 2014; 20:42–6.
 
155.
Zumla A, Azhar EI, Arabi Y, Alotaibi B, Rao M, McCloskey B, et al. Host-directed therapies for improving poor treatment outcomes associated with the middle east respiratory syndrome coronavirus infections. Int J Infect Dis. 2015; 40:71–4.
 
156.
Omrani AS, Saad MM, Baig K, Bahloul A, Abdul-Matin M, Alaidaroos AY, et al. Ribavirin and interferon alfa-2a for severe Middle East respiratory syndrome coronavirus infection: a retrospective cohort study. Lancet Infect Dis. 2014; 14:1090–5.
 
157.
Shalhoub S, Farahat F, Al-Jiffri A, Simhairi R, Shamma O, Siddiqi N, et al. IFN-alpha2a or IFN-beta1a in combination with ribavirin to treat Middle East respiratory syndrome coronavirus pneumonia: a retrospective study. J Antimicrob Chemother. 2015; 70: 2129–32.
 
158.
Kawase M, Shirato K, van der Hoek L, Taguchi F, Matsuyama S. Simultaneous treatment of human bronchial epithelial cells with serine and cysteine protease inhibitors prevents severe acute respiratory syndrome coronavirus entry. J Virol. 2012; 86:6537–45.
 
159.
Simmons G, Zmora P, Gierer S, Heurich A, Pohlmann S. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antiviral Res. 2013; 100: 605–14.
 
160.
Baez-Santos YM, St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: structure, function and inhibition by designed antiviral compounds. Antiviral Res. 2015; 115: 21–38.
 
161.
Lundin A, Dijkman R, Bergstrom T, Kann N, Adamiak B, Hannoun C, et al. Targeting membrane-bound viral RNA synthesis reveals potent inhibition of diverse coronaviruses including the Middle East respiratory syndrome virus. PLoS Pathog. 2014; 10: e1004166.
 
162.
Zhang H, Wang G, Li J, Nie Y, Shi X, Lian G, et al. Identification of an antigenic determinant on the S2 domain of the severe acute respiratory syndrome coronavirus spike glycoprotein capable of inducing neutralizing antibodies. J Virol. 2004; 78: 6938–6945.
 
163.
Bisht H, Roberts A, Vogel L, Bukreyev A, Collins PL, Murphy BR, et al. Severe acute respiratory syndrome coronavirus spike protein expressed by attenuated vaccinia virus protectively immunizes mice. Proc Natl Acad Sci U S A. 2004; 101: 6641–6646.
 
164.
Volz A, Kupke A, Song F, Jany S, Fux R, Shams-Eldin H, et al. Protective efficacy of recombinant modified vaccinia virus Ankara delivering Middle East respiratory syndrome coronavirus spike glycoprotein. J Virol. 2015; 89: 8651–8656.
 
165.
Xia S, Xu W, Wang Q, et al. Peptide-Based Membrane Fusion Inhibitors Targeting HCoV-229E Spike Protein HR1 and HR2 Domains. Int J Mol Sci. 2018;19(2):487.
 
166.
Lim Y, Ng Y, Tam J, Liu D. Human Coronaviruses: A Review of Virus-Host Interactions. Diseases. 2016;4(3):26.
 
167.
Owczarek K, Szczepanski A, Milewska A, Baster Z, Rajfur Z, et al. Early events during human coronavirus OC43 entry to the cell. Sci Rep. 2018; 8, 7124.
 
168.
Hulswit R, Lang Y, Bakkers M, Li W, Li Z, Schouten A et al. Human coronaviruses OC43 and HKU1 bind to 9-O-acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. PNAS. 2019; 116(7): 2681-2690.
 
eISSN:1898-2263
ISSN:1232-1966