Utilisation of peptides against microbial infections – a review
More details
Hide details
Biological Threat Identification and Countermeasure Centre of the Military Institute of Hygiene and Epidemiology, Puławy, Poland
Corresponding author
Tomasz Mirski   

Biological Threat Identification and Countermeasure Centre of the Military Institute of Hygiene and Epidemiology, Puławy, Poland
Ann Agric Environ Med. 2018;25(2):205-210
The emergence of resistance in microorganisms on a global scale has made it necessary to search for new antimicrobial factors. Antimicrobial peptides (AMPs) seem to meet these expectations. AMPs are produced by bacteria, viruses, plants, and animals, and may be considered as a new class of drugs intended for the prophylaxis and treatment of both systemic and topical infections. The aim of this study is to review the results of studies on the use of peptides to combat infections in vivo. Antimicrobial peptides may be applied topically and systemically. Among the peptides used topically, a very important area for their application is ophthalmology. AMPs in ophthalmology may be used mainly for the protection of contact lenses from ocular pathogens. Many AMPs are in clinical trials for application in the therapy of local infections. There may be mentioned such preparations as: pexiganan (magainin analogue), MX-226 (based on indolicidin), NEUPREX (isolated from human BPI (bactericidal/permeability-increasing) protein), IB-367 (variant of porcine protegrin), P113 (based on histatin), daptomycin, polymyxins, as well as peptidomimetics. In the combat against systemic infections are used such peptides as: P113D (modified P113 peptide containing D-amino acids), colistin, peptoids, and peptides containing non-typical amino acids or non-peptide elements. AMPs are also used as antiprotozoal, antifungal, antitoxic and immunostimulatory agents. The limitations in the use of peptides in the treatment of infections, such as susceptibility to proteolysis, and resistance of microorganisms to the peptides, are also discussed. AMPs are a promising strategy in the fight against microbial infections.
Zasloff M. Magainins, a class of antimicrobial peptides from Xenopus skin: isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc Natl Acad Sci USA. 1987; 84(15): 5449–5453.
Malangon RF. Design and synthesis of short antimicrobial peptides for plant protection. Study of their mode of action. Programma de doctorat en ciències experimentals i sostenibilitat. Universitat de Girona, 2010.
Wiesner J, Vilcinskas A. Antimicrobial peptides. The ancient arm of the human immune system. Virulence. 2010; 1(5): 440–464.
Hancock RE, Lehrer R. Cationic peptides: a new source of antibiotics. Trends Biotechnol. 1998; 16(2): 82–88.
Tao J, Wendler P, Connelly G, Lim A, Zhang J, King M et al. Drug target validation: lethal infection blocked by inducible peptide. Proc Natl Acad Sci U S A. 2000; 97(2): 783–786.
Sahl HG, Pag U, Bonness S, Wagner S, Antcheva N, Tossi A. Mammalian defensins: structures and mechanism of antibiotic activity. J Leukoc Biol. 2005; 77(4): 466–475.
Berrocal-Lobo M, Molina A, Rodriguez-Palenzuela P, Garcia-Olmedo F, Rivas L. Leishmania donovani: Thionins, plant antimicrobial peptides with leishmanicidal activity. Exp Parasitol. 2009; 122(3): 247–249.
Zhao W, Lu L, Tang Y. Research and application progress of insect antimicrobial peptides on food industry. Int J Food Eng. 2010; 6(6): 1–17.
Mihajlovic M, Lazaridis T. Antimicrobial peptides bind more strongly to membrane pores. Biochim Biophys Acta. 2010; 1798(8): 1494–1502.
Zasloff M. Antimicrobial peptides of multicellular organisms. Nature. 2002; 415(6870): 389–395.
Brogden KA, Ackermann M, McCray PB Jr, Tack BF. Antimicrobial peptides in animals and their role in host defences. Int J Antimicrob Agents. 2003; 22(5): 465–478.
Mirski T, Gryko R, Bartoszcze M, Bielawska-Drózd A, Tyszkiewicz W. Peptydy przeciwdrobnoustrojowe – nowe możliwości zwalczania infekcji u ludzi i zwierząt. Med Wet. 2011; 67(8): 517–521.
Kołodziej M, Joniec J, Bartoszcze M, Mirski T, Gryko R. Peptydy – nowe możliwości zwalczania zakażeń wirusowych. Przegl Epidemiol. 2011; 65(3): 477–482.
Eckert R. Road to clinical efficacy: challenges and novel strategies for antimicrobial peptide development. Future Microbiol. 2011; 6(6): 635–651.
Brandenburg L-O, Merres J, Albrecht L-J, Varoga D, Pufe T. Antimicrobial peptides: multifunctional drugs for different applications. Polymers. 2012; 4(1): 539–560.
Devocelle M. Targeted antimicrobial peptides. Front Immunol. 2012; 3(309): 1–4.
Yount NY, Yeaman MR. Multidimensional signatures in antimicrobial peptides. Proc Natl Acad Sci U S A. 2004; 101(19): 7363–7368.
Gordon YJ, Romanowski EG. A review of antimicrobial peptides and their therapeutic potential as anti-infective drugs. Curr Eye Res. 2005; 30(7): 505–515.
Marr AK, Gooderham WJ, Hancock RE. Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Curr Opin Pharmacol. 2006; 6(5): 468–472.
Zhang L, Yu W, He T, Yu J, Caffrey RE, Dalmasso EA, et al. Contribution of human alpha-defensin 1, 2, and 3 to the anti-HIV-1 activity of CD8 antiviral factor. Science. 2002; 298(5595): 995–1000.
Zhang L, Parente S, Harris SM, Falla TJ. Broad spectrum antimicrobial and antiviral peptides for prevention of sexually-transmitted diseases. American Society of Microbiology, New Orleans, LA, 2004.
Sousa LB, Mannis MJ, Schwab IR, Cullor J, Hosotani H, Smith W, et al. The use of synthetic cecropin (D5C) in disinfecting contact lens solutions. CLAO J. 1996; 22(2): 114–117.
Cole N, Hume EB, Vijay AK, Sankaridurg P, Kumar N, Willcox MD. In vivo performance of melimine as an antimicrobial coating for contact lenses in models of CLARE and CLPU. Invest Ophthalmol Vis Sci. 2010; 51(1): 390–395.
Schwab IR, Sousa LB, Mannis MJ, Cullor J, Smith W, Hosotani H, et al. The use of defense peptides in corneal storage media. Invest Ophthalmol Vis Sci. 1995; 36(4): 1017.
Mannis MJ. The use of antimicrobial peptides in ophthalmology: an experimental study in corneal preservation and the management of bacterial keratitis. Trans Am Ophthalmol Soc. 2001; 100: 243–271.
Nos-Barbera S, Portoles M, Morilla A, Ubach J, Andreu A, Paterson CA. Effect of hybrid peptides of cecropin A and mellitin in an experimental model of bacterial keratitis. Cornea. 1997; 16(1): 101–106.
Lamb HM, Wiseman LR. Pexiganan Acetate. Drugs. 1998, 56(6): 1047–1052.
Giuliani A, Pirri G, Nicoletto SF. Antimicrobial peptides: an overview of a promising class of therapeutics. Cent Eur J Biol. 2007; 2(1): 1–33.
Hancock RE. Cationic antimicrobial peptides: towards clinical applications. Expert Opin Investig Drugs. 2000; 9(8): 1723–1729.
Pfeufer NY, Hofmann-Peiker K, Mühle M, Warnke PH, Weigel MC, Kleine M. Bioactive coating of titanium surfaces with recombinant human β-defensin-2 (rHuβD2) may prevent bacterial colonization in orthopaedic surgery. J Bone Joint Surg Am. 2011; 93(9): 840–846.
Haynie SL, Crum GA, Doele BA. Antimicrobial activities of amphiphilic peptides covalently bonded to a water-insoluble resin. Antimicrob Agents Chemother. 1995; 39(2): 301–307.
Conlon JM, Sonnevend A. Clinical applications of amphibian antimicrobial peptides. J Med Sci. 2011; 4(2): 62–72.
Mickels N, McManus C, Massaro J, Friden P, Braman V, D’Agostino R, et al. Clinical and microbial evaluation of a histatin-containing mouthrinse in humans with experimental gingivitis. J Clin Periodontol. 2001; 28(5): 404–410.
Markou N, Apostolakos H, Koumoudiou C, Athanasiou M, Koutsoukou A, Alamanos I, et al. Intravenous colistin in the treatment of sepsis from multiresistant Gram-negative bacilli in critically ill patients. Crit Care. 2003; 7(5): 78–83.
Falagas ME, Kasiakou SK. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis. 2005; 40(9): 1333–1341.
Kubo A, Lunde CS, Kubo I. Indole and (E)-2-hexenal, phytochemical potentiators of polymyxins against Pseudomonas aeruginosa and Escherichia coli. Antimicrob Agents Chemother. 1996; 40(6): 1438–1441.
Conway SP, Pond MN, Watson A, Etherington C, Robey HL, Goldman MH. Intravenous colistin sulphometate in acute respiratory exacerbations in adult patients with cystic fibrosis. Thorax. 1997; 52(11): 987–993.
Steinstraesser L, Trust G, Rittig A, Hirsch T, Kesting MR, Steinau HU, et al. Colistin-loaded silk membranes against wound infection with Pseudomonas aeruginosa. Plast Reconstr Surg. 2011; 127(5): 1838–1846.
Dijkshoorn L, Brouwer CP, Bogaards SJ, Nemec A, Van den Broek PJ, Nibbering PH. The synthetic N-terminal peptide of human lactoferrin, hLF(1–11), is highly effective against experimental infection caused by multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother. 2004; 48(12): 4919–4921.
Rotem S, Mor A. Antimicrobial peptide mimics for improved therapeutic properties. Biochim Biophys Acta. 2009; 1788(8): 1582–1592.
Tew GN, Liu D, Chen B, Doerksen RJ, Kaplan J, Carroll PJ, et al. De novo design of biomimetic antimicrobial polymers. Proc Natl Acad Sci U S A. 2002; 99(8): 5110–5114.
Mygind PH, Fischer RL, Schnorr KM, Hansen MT, Sonksen CP, Ludvigsen S, et al. Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature. 2005; 437(7061): 975–980.
Chen HL, Su PY, Chang YS, Wu SY, Liao YD, Yu HM, et al. Identification of a novel antimicrobial peptide from human hepatitis B virus core protein arginine-rich domain (ARD). PLOS Pathog. 2013; 9(6): 1–15.
Giacometti A, Cirioni O, Barchiesi F, Scalise G. In-vitro activity and killing effect of polycationic peptides on methicillin-resistant Staphylococcus aureus and interactions with clinically used antibiotics. Diagn Microbiol Infect Dis. 2000; 38(2): 115–118.
Raqib R, Sarker P, Bergman P, Ara G, Lindh M, Sack DA, et al. Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic. Proc Natl Acad Sci U S A. 2006; 103(24): 9178–9183.
Cirioni O, Giacometti A, Ghiselli R, Bergnach C, Orlando F, Silvestri C, et al. LL-37 protects rats against lethal sepsis caused by Gram-negative bacteria. Antimicrob Agents Chemother. 2006; 50(5): 1672–1679.
Xia X, Zhang L, Wang Y. The antimicrobial peptide cathelicidin-BF could be a potential therapeutic for Salmonella typhimurium infection. Microbiol Res. 2015; 171: 45–51.
Ghosh JK, Shaool D, Guillaud P, Ciceron L, Mazier D, Kustanovich I, et al. Selective cytotoxicity of dermaseptin S3 toward intraerythrocytic Plasmodium falciparum and the underlying molecular basis. J Biol Chem. 1997; 272(50): 31609–31616.
Joshi M, Kundapura SV, Poovaiah T, Ingle K, Dhar PK. Discovering novel anti-malarial peptides from the not-coding genome – a working hypothesis. Curr Synthetic Sys Biol. 2013; 1(1): 1–4.
Ahmad I, Perkins WR, Lupan DM, Selsted ME, Janoff AS. Liposomal entrapment of the neutrophil-derived peptide indolicidin endows it with in vivo antifungal activity. Biochim Biophys Acta. 1995; 1237(2): 109–114.
Silva PM, Gonçalves S, Santos NC. Defensins: antifungal lessons from eukaryotes. Front Microbiol. 2014; 5(97): 1–17.
Tsutsuki K, Watanabe-Takahashi M, Takenaka Y, Kita E, Nishikawa K. Identification of a peptide-based neutralizer that potently inhibits both Shiga toxins 1 and 2 by targeting specific receptor-binding regions. Infect Immun. 2013; 81(6): 2133–2138.
Lipps BV. Small synthetic peptides inhibit, in mice, the lethalithy of toxins derived from animal, plant and bacteria. J Venom Anim Toxins. 2000; 6(1): 77–86.
Jokela J, Herfindal L, Wahlsten M, Permi P, Selheim F, Vasconçelos V, et al. A novel cyanobacterial nostocyclopeptide is a potent antitoxin against microcystins. Chembiochem. 2010; 11(11): 1594–1599.
Antoni G, Presentini R, Perin F, Tagliabue A, Ghiara P, Censini S, et al. A short synthetic peptide fragment of human interleukin 1 with immunostimulatory but not inflammatory activity. J Immunol. 1986; 137(10): 3201–3204.
Travis S, Yap LM, Hawkey C, Warren B, Lazarov M, Fong T, et al. RDP58 is a novel and potentially effective oral therapy for ulcerative colitis. Inflamm Bowel Dis. 2005; 11(8): 713–719.
Sørensen O, Bratt T, Johnsen AH, Madsen MT, Borregaard N. The human antibacterial cathelicidin, hCAP-18, is bound to lipoproteins in plasma. J Biol Chem. 1999; 274(32): 22445–22451.
Wiest A, Grzegorski D, Xu BW, Goulard C, Rebuffat S, Ebbole DJ, et al. Identification of peptaibols from Trichoderma virens and cloning of a peptaibol synthetase. J Biol Chem. 2002; 277(23): 20862–20868.
Banerjee A, Pramanik A, Bhattacharjya S, Balaram P. Omega amino acids in peptide design: incorporation into helices. Biopolymers. 1996; 39(6): 769–777.
Ostresh JM, Blondelle SE, Dörner B., Houghten RA. Generation and use of nonsupported-bound peptide and peptidomimetic combinatorial libraries. Methods Enzymol. 1996; 267: 220–234.
Groisman EA. The ins and outs of virulence gene expression: Mg2+ as a regulatory signal. Bioessays. 1998; 20(1): 96–101.
Gunn JS, Ryan SS, Van Velkinburgh JC, Ernst RK, Miller SI. Genetic and functional analysis of a PmrA-PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun. 2000; 68(11): 6139–6146.
Friedrich C, Scott MG, Karunaratne N, Yan H, Hancock RE. Salt-resistant alpha-helical cationic antimicrobial peptides. Antimicrob Agents Chemother. 1999; 43(7): 1542–1548.
Perron GG, Zasloff M, Bell G. Experimental evolution of resistance to an antimicrobial peptide. Proc Biol Sci. 2006; 273(1583): 251–256.
Journals System - logo
Scroll to top