Introduction and objective:
Multiple studies showed that patients with a severe course of COVID-19 may develop cardiovascular complications. Assessment of the incidence of myocardial injury in young, physically fit male patients with no comorbidities, and asymptomatic/mild course of the disease who recovered from COVID-19.

Material and methods:
A prospective, single-center, observational cohort study of 75 young (median[IQR] age 22 years) physically fit male patients, without comorbidities and smoking who recently recovered from COVID-19. Results were compared with a control group of age-matched, physically fit men with no comorbidities who tested negative for SARS-CoV-2.

19(25%) patients had possible COVID-19 related myocardial injury[PCRMI] on cardiovascular magnetic resonance [CMR] including definitive myocarditis (n=1;1.3%) and possible myocarditis (n=3;4%). Other abnormalities: mildly decreased (<50%) left ventricular(LV) ejection fraction (n=4;5%), increased LV end-diastolic volume index (n=8;11%) and LV mass index (n=9;12%). Patients with PCRMI had higher NT-pro-BNP level (29 vs 20pg/mL respectively, P=0.02) and lower LV ejection fraction (55% vs 59% respectively, P=0.03). PCRMI was demonstrated in 3(27%) volunteers from the control group based on the presence of LGE (2/18%) and decreased LV ejection fraction (1/9%). No volunteer from the control group was diagnosed with definitive or possible myocarditis.

PCRMI was a frequent finding in young, asymptomatic, physically-fit patients sans comorbidities relatively late after recovery from COVID-19. Whereas no definitive or possible myocarditis was found in the control group, LGE was relatively frequent suggesting that our findings might not be COVID-19 specific. This warrants a need for further investigation into the long-term cardiovascular consequences of COVID-19.

Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi:10.1016/S0140-6736(20)30183-5.
Long B, Brady WJ, Koyfman A, et al. Cardiovascular complications in COVID-19. Am J Emerg Med. 2020;38(7):1504–1507. doi:10.1016/j.ajem.2020.04.048.
Shi S, Qin M, Cai Y, et al. Characteristics and clinical significance of myocardial injury in patients with severe coronavirus disease 2019. Eur Heart J. 2020;41(22):2070–2079. doi:10.1093/eurheartj/ehaa408.
Pillai A, Lawson B. Coronavirus disease 2019 and cardiovascular diseases: collateral damage? Curr Opin Anaesthesiol. 2022;35(1):5–11. doi:10.1097/ACO.0000000000001076.
Puntmann VO, Carerj ML, Wieters I, et al. Outcomes of Cardiovascular Magnetic Resonance Imaging in Patients Recently Recovered From Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(11):1265–1273. doi:10.1001/jamacardio.2020.3557. Erratum in: JAMA Cardiol. 2020 Nov 1;5(11):1308.
Friedrich MG, Sechtem U, Schulz-Menger J, et al. International Consensus Group on Cardiovascular Magnetic Resonance in Myocarditis. Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol. 2009;53(17):1475–87. doi:10.1016/j.jacc.2009.02.007.
Huang L, Zhao P, Tang D, et al. Cardiac Involvement in Patients Recovered From COVID-2019 Identified Using Magnetic Resonance Imaging. JACC Cardiovasc Imaging. 2020;13(11):2330–2339. doi:10.1016/j.jcmg.2020.05.004.
Rajpal S, Tong MS, Borchers J, et al. Cardiovascular Magnetic Resonance Findings in Competitive Athletes Recovering From COVID-19 Infection. JAMA Cardiol. 2021 Jan 1;6(1):116–118. doi:10.1001/jamacardio.2020.4916. Erratum in: JAMA Cardiol. 2021;6(1):123.
Tanacli R, Doeblin P, Götze C, et al. COVID-19 vs. Classical Myocarditis Associated Myocardial Injury Evaluated by Cardiac Magnetic Resonance and Endomyocardial Biopsy. Front Cardiovasc Med. 2021;8:737257. doi:10.3389/fcvm.2021.737257.
Wiesmueller M, Wuest W, Heiss R, et al. Cardiac T2 mapping: robustness and homogeneity of standardized in-line analysis. J Cardiovasc Magn Reson. 2020;22(1):39. doi:10.1186/s12968-020-00619-x.
Nakamura M, Kido T, Hirai K, et al. What is the mid-wall linear high intensity “lesion” on cardiovascular magnetic resonance late gadolinium enhancement? J Cardiovasc Magn Reson. 2020;22(1):66. doi:10.1186/s12968-020-00665-5.
Mahrholdt H, Goedecke C, Wagner A, et al. Cardiovascular magnetic resonance assessment of human myocarditis: a comparison to histology and molecular pathology. Circulation. 2004;109(10):1250–8. doi:10.1161/01.CIR.0000118493.13323.81.
Eiros R, Barreiro-Pérez M, Martín-García A, et al. Afección pericárdica y miocárdica tras infección por SARS-CoV-2: estudio descriptivo transversal en trabajadores sanitarios [Pericardial and myocardial involvement after SARS-CoV-2 infection: a cross-sectional descriptive study in healthcare workers]. Rev Esp Cardiol. 2022;75(9):735–747. doi:10.1016/j.recesp.2021.10.021.
Inciardi RM, Lupi L, Zaccone G, et al. Cardiac Involvement in a Patient With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol. 2020;5(7):819–824. doi:10.1001/jamacardio.2020.1096.
Li H, Liu L, Zhang D, et al. SARS-CoV-2 and viral sepsis: observations and hypotheses. Lancet. 2020;395(10235):1517–1520. doi: 10.1016/S0140-6736(20)30920-X.
Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular Magnetic Resonance in Nonischemic Myocardial Inflammation: Expert Recommendations. J Am Coll Cardiol. 2018;72(24):3158–3176. doi:10.1016/j.jacc.2018.09.072.
Journals System - logo
Scroll to top