RESEARCH PAPER
Figure from article: Application of biofilm...
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Industrial, agricultural and construction development has brought improvements in living conditions, but have also increased the amount of pollution in the environment. Atmospheric precipitation collects pollutants from urban surfaces, which then end up in stormwater systems, contaminating surface waters. These pollutants are also linked to the similar effects of agriculture, as biogenic pollutants originate from over-fertilized crops. Contaminated surface water forces flora and fauna to adapt to new conditions, and affecting the structure and extent of ecosystems. Monitoring the environment with bio-indication methods is important because it enables identification of the areas in need of protection, in an inexpensive and environmentally harmless way. The aim of this study was to evaluate the possibility of using biocenotic indices to assess the impact of a stormwater system on the aquatic environment.

Material and methods:
Bio-indicative studies were conducted on periphyton sampled at 4 points on the Bystrzyca River in Lublin, eastern Poland, under the influence of stormwater discharge and 1 reference point localized before the stormwater system outflow. The quantitative data concerning the number of chosen algae species was analyzed using indices for the examination of community structure.

Results:
Considered the indices, i.e. taxonomic richness, Shannon, MacArthur, Menhinick and McIntosh were calculated, evaluated, and shown in various types of graphs showing the fluctuation of indices at measurement points.

Conclusions:
The use of bioindication and classic biocenotic indices allowed for the description, analysis of changes in the periphyton biocenosis under the influence of point source stormwater discharges, and linking measurements from tested samples with environmental conditions and biodiversity in the analyzed study sites and periods.
FUNDING
Polish Ministry of Education and Science within Grant Nos. FN-38, FD-20/IS-6/021.
REFERENCES (25)
1.
Widomski M, Musz-Pomorska A. Zielona architektura i zagospodarowanie wody opadowej jako element strategii przeciwdziałania zmianom klimatycznym na obszarach zurbanizowanych. In: Kowalska B, editor. Wpływ zmian klimatu na gospodarkę wodno-ściekową w aspekcie bezpieczeństwa zdrowotnego wody. Wydawnictwo Polskiej Akademii Nauk; 2021. p. 199–222.
 
2.
Januchta-Szostak A. Zarządzanie wodami opadowymi w miastach. Wodociągi – Kanalizacja. 2019;9:22–24.
 
3.
Numberger D, Ganzert L, Zoccarato L, et al. Characterization of bacterial communities in wastewater with enhanced taxonomic resolution by full-length 16S rRNA sequencing. Sci Rep. 2019;9:9673. https://doi.org/10.1038/s41598....
 
4.
Gorzel M, Kornijów R, Buczyńska E. Quality of rivers: comparison of hydro-morphological, physical-chemical and biological methods. Ecological Chemistry and Engineering S. 2018;25(1):101–22.
 
5.
Gajewska M. Złoża hydrofitowe z pionowym przepływem ścieków charakterystyka procesów i zastosowań. Polska Akademia Nauk, 2019.
 
6.
Babko R, Szulżyk-Cieplak J, Danko Y, et al. Evaluation of Stormwater System Influence on the River Using Algae. J Ecol Engineering. 2020;21(2):214–21. https://doi.org/10.12911/22998....
 
7.
Babko R, Szulżyk-Cieplak J, Danko Y, et al. Effect of Stormwater System on the Receiver. J Ecol Engineering. 2019;20(6):52–59.
 
8.
Łagód G. Bioindykacja w kontroli procesu oczyszczania ścieków. Polska Akademia Nauk, 2017.
 
9.
Bondaruk J, Janson E, Wysocka M, et al. Identification of hazards for water environment in the Upper Silesian Coal Basin caused by the discharge of salt mine water containing particularly harmful substances and radionuclides. J Sustain Min. 2015;14(4):179–87. https://doi.org/10.1016/j.jsm.....
 
10.
Ma F, Wang C, Zhang Y, et al. Development of microbial indicators in ecological systems. Int J Environ Res Public Health. 2022;19(21):13888. https://doi.org/10.3390/ijerph....
 
11.
Sumudumali R, Jayawardana J. A review of biological monitoring of aquatic ecosystems approaches: with special reference to macroinvertebrates and pesticide pollution. Environ Manage. 2021;67(2):263–276. https://doi.org/10.1007/s00267....
 
12.
Oksanen J, Simpson G, Blanchet F, et al. Vegan: community ecology package. 2025. https://vegandevs.github.io/ve... (access: 2025.09.20).
 
13.
Mulya H, Santosa Y, Hilwan I. Comparison of four species diversity indices in mangrove community. Biodiversitas. 2021;22(9):3648–55. https://doi.org/10.13057/biodi....
 
14.
Thukral AK. A review on measurement of Alpha diversity in biology. Agric Res J. 2017;54(1):1. https://doi.org/10.5958/2395-1....
 
15.
Bollarapu M, Kuchibhotla S, Kvsn R, et al. Dynamic perspectives on biodiversity quantification: beyond conventional metrics. Peer J. 2024;12:e17924. https://doi.org/10.7717/peerj.....
 
16.
Tareen A, Nadeem M, Kearfott K, et al. Descriptive analysis and earthquake prediction using boxplot interpretation of soil radon time series data. Appl Radiat Isot. 2019;154:108861. https://doi.org/10.1016/j.apra....
 
17.
Colonval J, Bouquet F. Hunting Inside N-Quantiles of Outliers (Hino). In: Wu X, Spiliopoulou M, Wang C, et al. Data Science: Foundations and Applications. PAKDD 2025. Lecture Notes in Computer Science. Springer, Singapore. 2025;15875. https://doi.org/10.1007/978-98....
 
18.
Richardson J. Kruskal–Wallis Test. In: Frey B, editor. The SAGE Encyclopedia of Educational Research, Measurement, and Evaluation. SAGE Publications, Inc; 2018. p. 937–939. https://doi.org/10.4135/978150....
 
19.
Bartkowska A, Chmiel D, Sise R, et al. Kolonizacja potencjalnych materiałów dowodowych przez makrofaunę bezkręgową w rzece Bystrzycy. In: Babicz M, Nowakowicz-Dębek B, Kropiwiec-Domańska K, editors. Wybrane zagadnienia z zakresu ochrony i zagrożeń środowiska Tom 2. Uniwersytet Przyrodniczy w Lublinie; 2022. p. 7–15.
 
20.
Sender J, Grabowski M, Urban D, et al. Preliminary study of water quality improving in storage reservoir by introducing of artificial phytolittoral. Annual Set The Environment Protection. 2018;20:392–416.
 
21.
Kozłowska A, Wojtaś E, Piłat-Rożek M, et al. Analysis of the Impact of Stormwater Systems on Receiving Waters Based on the Analysis of Algal Community Structure. J Ecol Engineering. 2023;24(9):139–47. https://doi.org/10.12911/22998....
 
22.
Nawrot N, Wojciechowska E. Review on the quality of sediments from the stormwater drainage system in the urban area. E3S Web Conf. 2017;17:00064. https://doi.org/10.1051/e3scon....
 
23.
Bąk M, Witkowski A, Żelazna-Wieczorek J, et al. Klucz do oznaczania okrzemek w fitobentosie na potrzeby oceny stanu ekologicznego wód powierzchniowych w Polsce. Główny Inspektorat Ochrony Środowiska. 2012. https://doi.org/10.13140/2.1.3....
 
24.
Czerpak J, Bomba B. Skład chemiczny śniegu miasta Lublin jako indykator zanieczyszczenia środowiska. In: Pilarska A, Pilarski K, editors. Nowoczesne rozwiązania w ochronie środowiska. Zagadnienia wybrane. Wydawnictwo Naukowe TYGIEL; 2023. p. 107–27.
 
25.
Mencwel J. Betonoza. Jak się niszczy polskie miasta. Wydawnictwo Krytyki Politycznej; 2020.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top