RESEARCH PAPER
Antibiotic sensitivity of environmental Legionella pneumophila strains isolated in Poland
More details
Hide details
1
Analytical Laboratory, The Pope John Paul II Province Hospital, Zamość, Poland
2
John Paul II University of Applied Sciences, Biala Podlaska, Poland
3
Chair and Department of Medical Microbiology, Medical University of Lublin, Poland
4
National Institute of Public Health – National Institute of Hygiene, Laboratory Departments of Environmental Health and Safety, Warsaw, Poland
Corresponding author
Agnieszka Sikora
2Analytical Laboratory, The Pope John Paul II Province Hospital of Zamość, Aleje Jana Pawła II 10, 22-400, Zamość, Poland
Ann Agric Environ Med. 2023;30(4):602-605
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Legionella bacteria are commonly found in natural aquatic environments such as rivers, lakes, ponds and hot springs. Legionella infection occurs through the inhalation of water-air aerosol generated, for example, by showers or hot tubs. The most common species responsible for infection is Legionella pneumophila, which can cause Pontiac fever, and Legionnaires’ disease, as well as a rare extrapulmonary form. The aim of the study’s is to assess the susceptibility of Legionella pneumophila bacteria isolated from water systems of public buildings in Poland to antibiotics and chemotherapeutic agents used in the treatment of Legionellosis pneumonia.
Material and methods:
A total of 100 L. pneumophila strains isolated from public buildings, such as hospitals and water recreation facilities, were used for the study. The drug sensitivity of the following antibiotics was determined: erythromycin, azithromycin, ciprofloxacin, levofloxacin, rifampicin, trimethoprim-sulfamethoxazole and tetracycline. Mean MIC50 and MIC90 values were read using accepted standards.
Results:
The highest mean MIC value was obtained for tetracycline 6,130+/-0,353 μg/ml (with a range from 1,500 μg/ml to 16,000 μg/ml. In contrast, the lowest MIC was recorded with rifampicin: 0.020+/-0.037 μg/ml (with a range from 0.016 μg/ml to 0.380 μg/ml).
Conclusions:
The lowest biocidal concentration was found for levofloxacin, the highest for tetracycline. The highest MIC50 and MIC90 values were found for tetracycline and the lowest for rifampicin. The highest biocidal values were found for azithromycin and the lowest for tetracycline.
REFERENCES (26)
1.
Kowalczyk B, Małek A, Palusińska-Szysz M. Budowa IV systemu sekrecji Legionella pneumophila i jego znaczenie w patogenezie. AHEM 2021;75(1):548–562.
https://doi:10.2478/ahem-2021-....
2.
Kanarek P, Bogiel T, Breza-Boruta B. Legionellosis risk-an overview of Legionella spp. habitats in Europe. Environ Sci Pollut Res Int. 2022;29(51):76532–76542.
https://doi:10.1007/s11356-022....
3.
Hatziprodromidou IP, Savoglidou I, Stavrou V, et al. Surveillance of Legionella spp. in Open Fountains: Does It Pose a Risk? Microorganisms. 2022 Dec 13;10(12):2458.
https://doi: 10.3390/microorganisms10122458.
4.
Doménech-Sánchez A, Laso E, Albertí S. Determination of Legionella spp. prevalence in Spanish hotels in five years. Are tourists really at risk? Travel Med Infect Dis. 2022;46:102269.
https://doi:10.1016/j.tmaid.20....
5.
Viasus D, Gaia V, Manzur-Barbur C, et al. Legionnaires’ Disease: Update on Diagnosis and Treatment. Infect Dis Ther. 2022;11(3):973–986.
https://doi: 10.1007/s40121-022-00635-7.
6.
Chaudhry R, Sreenath K, Agrawal SK, et al. Legionella and Legionnaires’ disease: Time to explore in India. Indian J Med Microbiol. 2018;36(3):324–333.
https://doi:10.4103/ijmm.IJMM_....
7.
Cattan S, Thizy G, Michon A, et al. Actualités sur les infections a Legionella [Legionella spp: An update]. Rev Med Interne. 2019 Dec;40(12):791–798. French. doi: 10.1016/j.revmed.2019.08.007.
8.
Pappa O, Chochlakis D, Sandalakis V, et al. Antibiotic Resistance of Legionella pneumophila in Clinical and Water Isolates – A Systematic Review. Int J Environ Res Public Health. 2020;17(16):5809.
https://doi:10.3390/ijerph1716....
9.
Torre I, Alfano R, Borriello T, et al. Environmental surveillance and in vitro activity of antimicrobial agents against Legionella pneumophila isolated from hospital water systems in Campania, South Italy: a 5-year study. Environ Res. 2018;164:574–579.
https://doi:10.1016/j.envres.2....
10.
Miyashita N, Kobayashi I, Higa F, et al. In vitro activity of various antibiotics against clinical strains of Legionella species isolated in Japan. J Infect Chemother. 2018;24(5):325–329.
https://doi:10.1016/j.jiac.201....
11.
Mondino S, Schmidt S, Rolando M, et al. Legionnaires’ Disease: State of the Art Knowledge of Pathogenesis Mechanisms of Legionella. Annu Rev Pathol. 2020;24(15):439–466.
https://doi: 10.1146/annurev-pathmechdis-012419-032742.
12.
Chauhan D, Shames SR. Pathogenicity and Virulence of Legionella: Intracellular replication and host response. Virulence. 2021;12(1):1122–1144.
https://doi:10.1080/21505594.2....
13.
Miyashita N. Atypical pneumonia: Pathophysiology, diagnosis, and treatment. Respiratory Investigation 2022;60(1):56–67.
14.
Yue R, Wu X, Li T, et al. Early Detection of Legionella pneumophila and Aspergillus by mNGS in a Critically Ill Patient With Legionella Pneumonia After Extracorporeal Membrane Oxygenation Treatment: Case Report and Literature Review. Front Med (Lausanne). 2021;30(8):686512. doi:10.3389/fmed.2021.686512.
15.
Żukowska A, Hryniewicz W. Rekomendacje diagnostyki, terapii i profilaktyki antybiotykowej zakażeń w szpitalu. Ministerstwo Zdrowia; 2020. p. 19–21.
16.
Cargnelli S, Powis J, Tsang JLY. Legionella pneumonia in the Niagara Region, Ontario, Canada: a case series. J Med Case Reports. 2016;10:336.
https://doi.org/10.1186/s13256....
17.
Cocuzza CE, Martinelli M, Perdoni F, et al. Antibiotic Susceptibility of Environmental Legionella pneumophila Strains Isolated in Northern Italy. Int J Environ Res Public Health. 2021;4;18(17):9352.
https://doi: 10.3390/ijerph18179352.
18.
Brunel R, Descours G, Durieux I, et al. KKL-35 Exhibits Potent Antibiotic Activity against Legionella Species Independently of trans-Translation Inhibition. Antimicrob Agents Chemother. 2018;25;62(2):e01459–17.
https://doi: 10.1128/AAC.01459-17.
19.
Portal E, Sands K, Portnojs A, et al. Legionella antimicrobial sensitivity testing: comparison of microbroth dilution with BCYE and LASARUS solid media. J Antimicrob Chemother. 2021;13;76(5):1197–1204.
https://doi:10.1093/jac/dkaa53....
20.
Sharaby Y, Nitzan O, Brettar I, et al. Antimicrobial agent susceptibilities of Legionella pneumophila MLVA-8 genotypes. Sci Rep. 2019;16;9(1):6138. doi:
https://10.1038/s41598-019-424....
21.
Gattuso G, Rizzo R, Lavoro A, et al. Overview of the Clinical and Molecular Features of Legionella Pneumophila: Focus on Novel Surveillance and Diagnostic Strategies. Antibiotics. 2022;11(3):370.
https://doi.org/10.3390/antibi....
22.
De Giglio O, Napoli C, Lovero G, et al. Antibiotic susceptibility of Legionella pneumophila strains isolated from hospital water systems in Southern Italy. Environ Res. 2015 Oct;142:586–90. doi:
https://10.1016/j.envres.2015.....
23.
McCurdy S, Keedy K, Lawrence L, et al. Efficacy of Delafloxacin versus Moxifloxacin against Bacterial Respiratory Pathogens in Adults with Community-Acquired Bacterial Pneumonia (CABP): Microbiology Results from the Delafloxacin Phase 3 CABP Trial. Antimicrob Agents Chemother. 2020;21;64(3):e01949–19. doi:
https://10.1128/AAC.01949-19.
24.
Sikora A, Gładysz I, Kozioł-Montewka M, et al. Assessment of antibiotic susceptibility of Legionella pneumophila isolated from water systems in Poland. Ann Agric Environ Med. 2017;21;24(1):66–69. doi:
https://10.5604/12321966.12340....
25.
Sreenath K, Chaudhry R, Vinayaraj EV, et al. Antibiotic susceptibility of environmental Legionella pneumophila isolated in India. Future Microbiol. 2019;14:661–669.
https://doi:10.2217/fmb-2019-0....
26.
Dubois J, Dubois M, Martel JF. In Vitro and Intracellular Activities of Omadacycline against Legionella pneumophila. Antimicrob Agents Chemother. 2020;21;64(5):e01972–19. doi:
https://10.1128/AAC.01972-19.