RESEARCH PAPER
Sanitization efficacy of anaerobic digestion and aeration of slurry from the aspect of limiting emission of Salmonella into the environment
 
More details
Hide details
1
Department of Microbiology, Faculty of Agriculture and Biotechnology, University of Technology and Life Sciences in Bydgoszcz, Poland
2
Department of Microbiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, Poland
3
Department of Animal Hygiene and Microbiology of the Environment, Faculty of Animal Breeding and Biology, University of Technology and Life Sciences, Bydgoszcz, Poland
4
Department of Chemistry and Fuels Technology, Faculty of Chemistry, University of Technology, Wrocław, Poland
CORRESPONDING AUTHOR
Zbigniew Paluszak   

Department of Microbiology, Faculty of Agriculture and Biotechnology, University of Technology and Life Sciences in Bydgoszcz, Poland
 
Ann Agric Environ Med. 2012;19(3):427–430
 
KEYWORDS
ABSTRACT
The aim of this study was to estimate the usefulness of mesophilic anaerobic digestion and aeration for sanitization of slurry from the aspect of limiting transmission of Salmonella into the environment. Material for the study was fresh pig slurry. Collected samples were subjected to anaerobic digestion at 35°C and aeration with an initial temperature of 35°C. The efficacy of both methods was examined based on determination of the elimination rate and theoretical time of survival of Salmonella Senftenberg W775, Salmonella Enteritidis and Salmonella Typhimurium introduced into slurry in carriers of type Filter-Sandwich. Samples for the study were collected every 24 hours and the number of bacilli was determined with the MPN (Most Probably Number) method. The study indicated that fermentation is a more effective method for slurry sanitization. A higher rate of elimination and shorter time of survival of all the tested bacteria was observed, compared with the use of aeration. The experiment allowed us to prove the high sanitization efficacy of both examined methods. They ensure the full elimination of the tested serotypes of Salmonella in only slightly more than 10 days. The use of fermentation or aeration as a way of slurry treatment for agricultural purposes makes it possible to obtain a fertilizer which is valuable and safe for humans and the environment.
 
REFERENCES (26)
1.
Kwiatek K, Hoszowski A, Wasal D. Eliminacja Salmonella w łańcuchu żywności pochodzenia zwierzęcego jako ważny element zapewnienia jej bezpieczeństwa. Życie Weterynaryjne. 2006; 81 (5): 346-349 (in Polish).
 
2.
U.S. Department of Agriculture, Food Safety and Inspection Service. Farm-to-table safety system; Salmonella enteritidis contamination, control and reduction. Fed Regist. 1998; 63: 27502-27511.
 
3.
Kiessling CR, Cutting JH, Loftis M, Kiessling WM, Datta AR, Sofos JN. Antimicrobial resistance of food-related Salmonella isolates, 1999-2000. J Food Prot. 2002; 65: 603-608.
 
4.
Paluszak Z, Ligocka A, Breza-Boruta B, Olszewska H. The survival of selected fecal bacteria in peat soil amended with slurry. EJPAU Animal Husbandry. 2003; 6 (2). www.ejpau.media.pl/volume6/iss... (access: 2011.11.11).
 
5.
Wray C. Survival and spread of pathogenic bacteria of veterinary importance within the environment. Vet Bull. 1975; 45: 543–555.
 
6.
Olszewska H. Aspekty higieniczne rolniczego wykorzystania gnojowicy. Rozprawy nr 116. Wydawnictwo Uczelniane ATR Bydgoszcz, 2005.
 
7.
Hess E, Lott G, Breer C. Klärschlamm und Freilandbiologie von Salmonella. Zbl Bakt Hyg Abt Orig B. 1974; 158: 446-455.
 
8.
Thunegard E. On the persistence of bacteria in manure. Acta Vet Scand Suppl. 1975; 56: 1-86.
 
9.
Solomon EB, Yaron S, Matthews KR. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl Environ Microbiol. 2002; 68 (1): 397–400.
 
10.
Guo X, Chen J, Brackett RE, Beuchat LR. Survival of Salmonellae on and in tomato plants from the time of inoculation at flowering and early stages of fruit development through fruit ripening. Appl Environ Microbiol. 2001; 67 (10): 4760–4764.
 
11.
Beuchat LR, Ryu J-H. Produce handling and processing practices. Emerg Infect Dis. 1997; 3: 439–465.
 
12.
Tauxe R, Kruse H, Hedberg C, Potter M, Madden J, Wachsmuth K. Microbial hazards and emerging issues associated with produce: a preliminary report to the national advisory committee on microbiologic criteria for foods. J Food Prot. 1997; 60: 1400–1408.
 
13.
Corped DE. Microbiological hazards from humans of antimicrobial growth promotor use in animal production. Rev Med Vet. 1996; 147: 851-862.
 
14.
Kelley, TR, Pancorbo OC, Merka WC, Barnhart HM. Antibiotic resistance of bacterial litter isolates. Poult Sci. 1998; 77: 243-247.
 
15.
Narodowy Instytut Zdrowia Publicznego – Państwowy Zakład Higieny – Zakład Epidemiologii oraz Główny Inspektorat Sanitarny: Choroby Zakaźne w Polsce w 2009 roku. Biuletyn. PZH, Warszawa, 2010 (in Polish).
 
16.
Kumar R, Gupta MK, Kanwar SS. Fate of bacterial pathogens in cattle dung slurry subjected to anaerobic digestion. World J Microbiol Biotechnol. 1999; 15: 335-338.
 
17.
Bendixen, HJ. Hygienic safety: results of scientific investigations in Denmark (sanitation requirements in Danis Biogas Plants). Proceedings of the IEA workshop: Hygienic and environmental aspects of anaerobic digestion: legislation and experiences in Europe; Universität Hohenheim; Stuttgart; 1999.p. 27-47.
 
18.
Martens W, Fink A, Phillip W, Weber W, Winter D, Böhm R. Inactivation of viral and bacterial pathogens in large scale slurry treatment plants. Proceedings from RAMIRAN 98 8th Int. Conf. on Management Strategies for Organic Waste Use in Agriculture; University of Hohenheim; Stuttgart; 1998.p.529–539.
 
19.
Olsen JE. Studies on the reduction of pathogenic and indicato bacteria in liquid pig manure treated by sedimentation and anaerobic filter digestion for methane generation. Biol Waste. 1988; 24: 17-26.
 
20.
Munch B, Schlundt J. On the reduction pathogenic and indicator bacteria in animals slurry and sewage sludge subjected to anaerobic digestion or chemical disinfection. In: Strauch D. Hygienic Problems of Animal Manures. University of Hohenheim, Stuttgart, 1983.p.131-149.
 
21.
Schlundt J. Survival of pathogenic enteric bacteria in anaerobic digestion and on slurry-treated land. Dissertation Abstract International. 1984; C45 (4): 1025.
 
22.
Olsen JE, Larsen HE. Bacterial decimation times in anaerobic digestions of animals slurries. Biol Waste. 1987; 21: 153-168.
 
23.
Paluszak Z, Olszewska H, Skowron KJ, Klimek M. Ocena skuteczności mezofilnej fermentacji metanowej jako metody higienizacji gnojowicy. Ekologia i Technika. 2010; Vol. XVIII, 6: 356-360 (in Polish).
 
24.
Hanajima D, Haruta S, Hori T, Ishii M, Haga K, Igarashi Y. Bacterial community dynamics during reduction of odorous compounds in aerated pig manure slurry. J Appl Microbiol. 2008; 106: 118–129.
 
25.
Paluszak Z. Microbiological and parasitologic investigations of cattle slurry fermented aerobically in thermophilic conditions. EJPAU Vet Med. 1998; 1 (1). www.ejpau.media.pl/volume1/iss... (access: 2011.11.11).
 
26.
Wassen H. Hygienische Untersuchungen über die Verwendbarkeit der Umwälzbeluftung (System FUSCH) zur Aufbereitung von flüssigen Abfällen aus dem kommunalen und landwirschaftlichen Bereich. Diss Justus Liebig-Universität, Giessen, 1975.
 
eISSN:1898-2263
ISSN:1232-1966