RESEARCH PAPER
First molecular characterization of Dobrava-Belgrade virus found in Apodemus flavicollis in Poland
 
More details
Hide details
1
Biological Threats Identification and Countermeasure Centre, Military Institute of Hygiene and Epidemiology, Pulawy, Poland
2
Provincial Sanitary Epidemiological Station, Rzeszow, Poland
3
Department of Zoology, Faculty of Biology and Agriculture, University of Rzeszow, Poland
CORRESPONDING AUTHOR
Marcin Kolodziej   

Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epidemiology, Biological Threats Identification and Countermeasure Center, Military Institute of Hygiene and Epide, 2 Lubelska St., 24-100 Pulawy, Poland
 
Ann Agric Environ Med. 2018;25(2):368–373
KEYWORDS
TOPICS
ABSTRACT
Introduction:
Dobrava-Belgrade virus (DOBV) is one of the emerging pathogens which have been reported during the last decades in Europe and have attracted the attention of researchers. The course of infection among humans may have a varied course – from the completely asymptomatic to the more severe forms, such as haemorrhagic fever with renal syndrome (HFRS). DOBV is hosted and carried by rodents like Apodemus flavicollis or A. agrarius, which occur commonly in Europe.

Objective:
To-date, orthohantaviruses have been reported in Poland, both in humans and animals, but detailed country-scale studies have not yet been carried out. The aim of the study was molecular characterization of a strain which was found in A. flavicollis in south-eastern Poland.

Material and methods:
The phylogenetic analysis of the first Dobrava-Belgrade virus found in A. flavicollis in the subcarpathian region of south-eastern Poland, presented in this study, was performed after virus proliferation in cell culture and sequencing of specific PCR products.

Results:
Based on genetic sequences of fragments of three segments (S, M and L), the isolated virus was assigned to the Dobrava genotype, taking into consideration the most current classification of the DOBV species.

 
REFERENCES (27)
1.
Holmes EC, Zhang Y-Z. The evolution and emergence of hantaviruses. Curr Opin Virol. 2015;10:27-33.
 
2.
Klempa B, Avšič-Županc T, Clement J, Dzagurowa TK, Henttonen H, Heyman P, et al. Complex evolution and epidemiology of Dobrava-Belgrade hantavirus: definition of genotypes and their characteristics. Arch Virol. 2013;158: 521-529.
 
3.
Michalski A, Niemcewicz M, Bielawska-Drózd A, Nowakowska A, Gaweł J, Pitucha G, et al. Surveillance of hantaviruses in Poland: a study of animals reservoirs and human hantavirus disease in Subcarpathia. Vector Borne Zoonotic Dis. 2014; 14(7): 514-522.
 
4.
Klempa B, Schütt M, Auste B, Labuda M, Ulrich R, Meisel H, et al. First molecular identification of human Dobrava virus infection on Central Europe. J Clin Microbiol. 2004; 42(3): 1322-1325.
 
5.
Avšič-Županc T, Korva M, Markotić A. HFRS and hantaviruses in the Balkans/South-East Europe. Virus Res. 2014; 187: 27-33.
 
6.
Sadkowska-Todys M, Gut W, Baumann A, Siennicka J, Litwińska B, Zieliński A. Ocena problemu występowania zakażeń ludzi hantawirusami na terenie Polski, ze szczególnym uwzględnieniem wirusa Puumala. [Occurrence of human hantavirus infections in Poland]. Przegl Epidemiol. 2007; 61: 497-503.
 
7.
Knap JP, Nowakowska A, Dutkiewicz J, Zając V, Wójcik-Fatla A, Chmielewska-Badora J, et al. Obecność przeciwciał anty-hantawirusowych u leśników Roztoczańskiego Parku Narodowego i nadleśnictwa Puławy (makroregion lubelski) Doniesienie wstępne. [Detection of antibodies against hantaviruses in forestry workers of the Roztocze National Park and Puławy Forest Inspectorate (Lublin macroregion)]. Med Ogólna. 2010; 16(2): 201-216.
 
8.
Song J-W, Baek LJ, Song K-J, Skrok A, Markowski J, Bratosiewicz-Wasik J, et al. Characterization of Tula virus from common voles (Microtus arvalis) in Poland: evidence for geographic-specific phylogenetic clustering. Virus Genes. 2004; 29(2): 239-247.
 
9.
Wójcik-Fatla A, Zając V, Knap JP, Sroka J, Cisak E, Sawczyn A, et al. A small-scale survey of hantavirus in mammals from eastern Poland. Ann Agric Environ Med. 2013, 20(2): 283-286.
 
10.
Gu SH, Markowski J, Kang HJ, Hejduk J, Sikorska B, Liberski PP, et al. Boginia virus, a newfound hantavirus harbored by the Eurasian water sire (Neomys fodiens) in Poland. Virol J. 2013; 10(160).
 
11.
Kramski M, Meisel H, Klempa B, Krüger DH, Pauli G, Nitsche A. Detection and typing of human pathogenic hantaviruses by real-time reverse transcription-PCR and pyrosequencing. Clin Chem. 2007; 53(11): 1899-1905.
 
12.
Maes P, Keyaerts E, Li S, Nlandu-Masunda V, Clement J, Van Ranst M. Replication reduction neutralization test, a quantitative RT-PCR-based techniques for the detection of neutralizing hantavirus antibodies. J Virol Methods. 2009; 59(2): 295-299.
 
13.
Papa A, Johnson AM, Stockton PC, Bowen MD, Spiropoulou CF, Alexiou-Daniel S, et al. Retrospective serological and genetic study of the distribution of hantaviruses in Greece. J Med Virol. 1998; 55(4): 321-327.
 
14.
Klempa B, Stanko M, Labuda M, Ulrich R, Meisel H, Krüger DH. Central European Dobrava hantavirus isolate from a striped field mouse (Apodemus agrarius). J Clin Microbiol. 2005; 43(6): 2756-2763.
 
15.
Weidmann M, Schmidt P, Vackova M, Krivanec K, Munclinger P, Hufert FT. Identification of genetic evidence for Dobrava virus spillover in rodents by nested reverse transcription (RT)-PCR and TaqMan RT-PCR. J Clin Microbiol. 2005; 43(2): 808-812.
 
16.
Schlegel M, Klempa B, Schmidt-Chanasit J, Büchner T, Groschup MH, Meier M, et al. Dobrava-Belgrade virus spillover infections, Germany. Emerging Infect Dis. 2009; 15(12): 2017-2020.
 
17.
Plyusnin A, Krüger DH, Lundkvist A. Hantavirus infections in Europe. Adv Virus Res. 2001; 57: 105-136.
 
18.
Hofmann J, Meier M, Enders M, Führer A, Ettinger J, Klempa B, et al. Hantavirus disease in Germany due to infection with Dobrava-Belgrade virus genotype Kurkino. Clin Microbiol Infect. 2014; 20: O648-O655.
 
19.
Jakab F, Horváth G, Ferenczi E, Sebők J, Varecza Z, Szűcs G. Detection of Dobrava hantaviruses in Apodemus agrarius in the Transdanubian region in Hungary. Virus Res. 2007; 128(1-2): 149-152.
 
20.
Plyusnina A, Krajinović L, Margaletic J, Niemimaa, J., Nemirov, K., Lundkvist Ǻ, et al. Genetic evidence for the presence of two distinct hantaviruses associated with Apodemus mice in Croatia and analysis of local strains. J Med Virol. 2011; 83(1): 108-114.
 
21.
Avšič-Županc T, Nemirov K, Petroviec M, Trilar T, Poljak M, Vaheri A, et al. Genetic analysis of wild-type Dobrava hantavirus in Slovenia: co-existence of two distinct genetic lineages within the same natural focus. J Gen Virol. 2000; 81(7): 1747-1755.
 
22.
Klempa B, Schmidt HA, Ulrich R, Kaluz S, Labuda M, Meisel H, et al. Genetic interaction between distinct Dobrava hantavirus subtypes in Apodemus agrarius and A. flavicollis in Nature. J Virol. 2003; 77(1): 804-809.
 
23.
Sandmann S, Meisel H, Razanskiene A, Wolbert A, Pohl B, Krüger DH, et al. Detection of human hantavirus infection in Lithuania. Infection 2005; 33(2): 66-72.
 
24.
Kirsanovs S, Klempa B, Franke R, Lee M-H, Schönrich G, Rang A, et al. Genetic reassortment between high-virulent and low-virulent Dobrava-Belgrade virus strains. Virus Genes 2010; 41(3): 319-328.
 
25.
Krüger DH, Ulrich RG, Hofmann J. Hantaviruses as zoonotic pathogens in Germany. Dtsch Arztebl Int. 2013; 110(27-28): 461-467.
 
26.
https://ecdc.europa.eu/en/publ... (access: 2018.04.20).
 
27.
http://wwwold.pzh.gov.pl/oldpa... (access: 2018.04.20).
 
eISSN:1898-2263
ISSN:1232-1966