RESEARCH PAPER
Effects of spring season solar drying process on sanitation indicators in sewage sludge and potential as a method for fertilizer production
 
More details
Hide details
1
Department of Microbiology, University of Technology and Life Sciences, Bydgoszcz, Poland
2
Department of Microbiology, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Collegium Medicum of L. Rydygier in Bydgoszcz, Poland
CORRESPONDING AUTHOR
Zbigniew Paluszak   

Department of Microbiology, University of Technology and Life Sciences, Bydgoszcz, Poland
 
Ann Agric Environ Med. 2013;20(1):8–12
 
KEYWORDS
ABSTRACT
The agricultural use of sewage sludge is possible on condition of maintaining microbiological and parasitological standards, and one of the most modern methods improving its sanitary state is solar drying. In the presented study, the effect of this process on the elimination of indicator microorganisms (Escherichia coli, Salmonella Senftenberg W775, Enterococcus spp.) and eggs of Ascaris suum introduced into the biomass of sludge was examined. The experiment was carried out in the spring period with a maximal temperature of 18°C inside the drying plant. Bacteria and parasite eggs were introduced into special carriers (cylinders filled with sewage sludge) and placed at selected points of the drier. The carriers were removed every 7 days and subject to a research procedure in order to estimate the number of bacteria and percentage of live eggs of Ascaris suum. Sanitization of the material was not obtained, since after 28 days of the process the final product contained a large concentration of Enterococcus spp. and S. Senftenberg W775 (105 -109 MPNg-1). Only the number of E. coli decreased by 6 log. During the process, the fastest decrease in the number of bacteria was observed in E. coli (ca 0.2 log/day), slower in enterococci (0.02-0.081 log/day), and the slowest in bacilli of the genus Salmonella (0.011-0.061 log/day). Sludge after drying also still contained 57-66% of live eggs of A. suum. The study proved that the solar drying of sludge in the spring period results in a product which poses a hazard for public and animal health and environmental sustainability, and should not be used as a fertilizer.
 
REFERENCES (29)
1.
Dumontet S, Scopa A, Kerje S, Krovacek K. The importance of pathogenic organisms in sewage and sewage sludge. J Air Waste Manag Assoc. 2001; 51: 848-60.
 
2.
Foess GW, Sieger RB. Pathogen/vector attraction reduction requirements of the sludge rules. Water/Eng Manag. 1993; 140: 25-26.
 
3.
Strauch D. Przeżywalność drobnoustrojów chorobotwórczych i pasożytów w wydalinach, nawozie i szlamie ściekowym (Survival of pathogenic microorganisms and parasites in excreta, manure and sewage sludge). Med Weter. 1993; 49: 117-121.
 
4.
Vasseur L, Cloutier C, Labelle A, Duff JN, Beaulieu C, Ansseau C. Responses of indicator bacteria to forest soil amended with municipal sewage sludge from aerated and non-aerated ponds. Environ Pollut. 1996; 92: 67-72.
 
5.
Olszewska H, Paluszak Z, Jarząbek Z. Survival of bovine enterovirus strain LCR-4 in water, slurry, and soil. Bull Vet Inst Pulawy 2008; 52: 205-209.
 
6.
Vasickova P, Dvorska L, Lorencova A, Pavlik I. Viruses as a cause of foodborne diseases: a review of the literature. Vet Med-Czech 2005; 50: 89-104.
 
7.
Wasiak G. Wytwarzanie, właściwości i gospodarka osadami ściekowymi w Polsce na tle Zachodniej Europy i USA. Ekoinżyneria 1995; 2: 15-19.
 
8.
Bergstrom K, Langeland G. Survival of Ascaris eggs, Salmonella and fecal coli soil and on vegetables grown in infected soil. Nord Vet-Med. 1981; 33: 23-32.
 
9.
Sobczyk R, Kabus P. Słoneczne suszarnie osadów. Forum Eksploatatora 03/2006, Wydawnictwo Seidel-Przywecki, 2006.
 
10.
Bux M, Baumann R, Philipp W, Conrad T, Mühlbauer W. Class – A by solar drying recent experiences in Europe. Proceedings of the WEFTEC Session 41 through Session 50, Atlanta, 2001, 309-317.
 
11.
Hertwig PK. Seuchenhygienische Untersuchungen bei der solaren Trocknung und Pelletierung von Klärschlamm (Diplomarbeit). Stuttgart, Universität Hohenheim, 2004.
 
12.
Horn S, Barr K, McLellan J, Bux M. Accelerated air drying of sewage sludge using a climate controlled solar drying hall, 2002, http://www.thermo-system.com.
 
13.
Nathan S, Clarke B. SolarMix – Innovation in Drying Technology. CabWater Caboolture Shire Council, Arkwood Organic Recycling Pty Ltd; Mixwell Specialized Transport Pty Ltd., Australia 2004 (www.wendewolf.com/public.php?l...).
 
14.
Shanahan EF, Roiko A, Tindale NW, Thomas MP, Walpole R, Kutböke DI. Evaluation of Pathogen Removal in a Solar Sludge Drying Facility Using Microbial Indicators. Int J Environ Res Public Health 2010; 7(2): 565-582.
 
15.
Ögleni N, Özdemir S. Pathogen reduction effects of solar drying and soil application in sewage sludge. Turk J Agric For. 2010; 34: 509-515.
 
16.
Mathioudakis VL, Kapagiannidis AG, Athanasoulia E, Diamantis VI, Melidis P, Aivasidis A. Extended dewatering of sewage sludge in solar drying plants, Desalination 2009; 248(1-3): 733-739.
 
17.
Cota AD, Figueroa C, Espinoza E, Avitia C, Fayett D, Lares JG, Flores JP, Vázquez F, Velázquez N. Active Solar Drying of Wastewater Sludge: Physicochemical, Toxicological, and Nutrimental Characterization. México. Energ Source 2010; 1-30.
 
18.
Rozporządzenie Ministra Środowiska z dnia 13 lipca 2010r. w sprawie komunalnych osadów ściekowych. (Dz.U. 2010 Nr 137 poz.924).
 
19.
Roth S. Mikrobiologisch – hygienische Untersuchungen zur Bioabfallkompostierung in Mieten in Kleinkompostern. PhD thesis, Stuttgart,Universitaet Hohenheim, 1993.
 
20.
Paluszak Z, Bauza-Kaszewska J, Ligocka A. Przeżywalność pałeczek Salmonella Senftenberg W 775 w osadach pościekowych poddanych procesowi kompostowania (Survival of Salmonella Senftenberg W 775 in the sewage sludge composting process). Med Weter. 2003; 59: 239-243 (in Polish).
 
21.
Paluszak Z, Bauza Kaszewska J, Ligocka A, Olszewska H, Philipp W. Mikrobiologisch–seuchenhygienische Untersuchungen bei der Kompostierung von Klarschlamm zur landwirtschaftlichen Verwertung. Tierarztl Umschau 2003; 58: 297-303.
 
22.
Paluszak Z, Ligocka A, Olszewska H. Inaktywacja jaj Ascaris suum w kompostowanych osadach ściekowych (Inactivation of Ascaris suum eggs during sewage sludge composting). Med Weter. 2003; 59: 154-157 (in Polish).
 
23.
Garcia-Orenes F, Rolda A, Guerrero C, Mataix-Solera J, Navarro-Pedreno J, Gomez I, Mataix-Beneyto J. Effect of irrigation on the survival of total coliforms in three semiarid soils after amendment with sewage sludge. Waste Manag. 2007; 27: 1815-1819.
 
24.
Gibbs RA, Hu CJ, Ho GE, Unkovich I. Regrowth of faecal coliforms and salmonellae in stored biosolids and soil amended with biosolids. Water Sci Technol. 1997; 35: 269-275.
 
25.
Soares HM, Cardenas B, Weir D, Switzenbaun MS. Evaluating pathogen regrowth in biosolid compost. BioCycle. 1995; 36: 70-76.
 
26.
Paluszak Z. Microbiological and parasitologic investigations of cattle slurry fermented aerobically in thermophilic coditions. EJPAU 1998; 1 (http://www.ejpau.media.pl/volu...).
 
27.
Prędota M. Osady ściekowe – źródło zakażenia czynnikami biologicznymi środowiska glebowego. Mat Szkoleniowe GFW, Gdańsk 2000.
 
28.
Acquisto BA, Reimers RS, Smith JE, Pillai SD. Factors Affecting Disinfection and Stabilization of Sewage Sludge. Proceedings of the WEFTEC Session 61 through Session 70, Cincinnati, 2006: 5345-5361.
 
29.
Aitken MD, Mullennix RW. Another look at thermophilic anaerobic digestion of wastewater sludge. Water Environ Res. 1992; 64: 915-919.
 
eISSN:1898-2263
ISSN:1232-1966