RESEARCH PAPER
Comparative determination of physical stress and strain on milkers in milking parlours on dairy farms in Upper Austria, using ECG, an activity sensor and spirometer
1,
1 1 | Department of Sustainable Agricultural Systems, Division of Agricultural Engineering, University of Natural Resources and Life Sciences, Vienna, Austria |
2 | University of Applied Sciences Wiener Neustadt, Sport and Exercise Sciences, Wiener Neustadt, Austria |
CORRESPONDING AUTHOR
Elisabeth Quendler
Department of Sustainable Agricultural Systems, Division of Agricultural Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
Department of Sustainable Agricultural Systems, Division of Agricultural Engineering, University of Natural Resources and Life Sciences, Vienna, Austria
Ann Agric Environ Med. 2017;24(2):294–298
KEYWORDS
ABSTRACT
To-date, the impact of modern milking parlors in dairy farming on physical strain has not been the subject of many studies.
Therefore, this case study aims to record and evaluate the physical strain during the entire milking process, including the
oxygen consumption (VO2), heart rate (HR) and metabolic rate (WkJ, Watt) of milkers. The recording was conducted with a
portable respiratory gas analysis system and an ECG and activity sensor on 4 dairy farms in Austria. Eight subjects aged from
45–52 years, with a mean age 50±2.4 SD, participated and the data were recorded during the milking process in 2 types of
milking parlours. For assessment, the entire milking process was divided into preparation, milking and follow-up work. The
entire milking process was performed with an average oxygen consumption of 46.5 l/h and a heart rate of 98 bpm, which
is below the anaerobic threshold; whereas in the preparation and follow-up work, this threshold was exceeded. Generally,
during the milking process, a moderate physical strain (32.4%) and a balanced metabolic rate (143 watt/m2) were determined.
The physical strain in female milkers was 9.2% higher than in male milkers throughout the entire process. Reduction of
physical strain can be achieved through additional breaks, reduced work speed, division of labour and technical devices.
REFERENCES (24)
1.
Wolkerdorfer F. Automatisches Melken in Oberösterreich – Erfahrungen und Empfehlungen aus und für die Praxis. Viehwirtschaftliche Fachtagung. 2012 April 25–26; Raumberg-Gumpenstein, Austria. Raumberg-Gumpenstein: Lehr- und Forschungszentrum für Landwirt-schaft; 2012.
2.
Statistik Austria und Agrarmarkt Austria. Kuhmilcherzeugung und –verwendung. Statistik Austria und Agrarmarkt Austria, 2015.
3.
Schön H, Auernhammer H, Bauer R, Boxberger J, Demmel M, Estler M et al. Landtechnik Bauwesen, Verfahrenstechnik – Arbeit – Gebäude – Umwelt. BLV Verlagsgesellschaft, München, 1998.
4.
Auernhammer H. Methodische Möglichkeiten und Grenzen der Bewertung und Beurteilung der Arbeitsbelastung. Bayerisches Landwirtschaftliches Jahrbuch, 1989.
5.
Hoehne-Hückstädt U, Kauke M. Arbeitsbelastung beim Melken. ART-Schriftreihe, 2009.
6.
Jakob M, Rose S, Brunsch R. Einfluss Melkstandausstattung auf die Arbeitsbelastung des Melkers. Zeitschrift für Arbeitswissenschaften. 2007; 3(61): 173–181.
7.
Reinemann DJ. A Review of Studies on the Ergonomics of Milking. University of Wisconsin Milking Research and Instruction Lab, 2005.
8.
Schick M. Vor- und Nachteile verschiedener Melkverfahren aus der Sicht der Arbeitswirtschaft. Forschungsanstalt Agroscope, Reckenholz-Tänikon, ART-Schriftreihe. 2009; 9: 49–58.
9.
ÖKL-Arbeitskreis Landwirtschaftsbau. Melkstandanlagen. ÖKL-Merk -blatt Bauen. 2012; 2(51): 7–14.
10.
Kirst M. Verbesserung der automatischen EKG-Analyse durch Hinzu-nahme von Kontextinformationen. Dissertation. Karlsruher KIT, 2013.
11.
Luder W, Huber R, Juliszewski T. Arbeitsbelastung beim Melken. FAT-Berichte. Tänikon. 1986; 303: 2–5.
12.
Ahonen E, Venäläinen JM, Könönen U, Klen T. The physical strain of dairy farming. Ergonomics. 1990; 33(12): 1549–1555.
13.
Macfarlane DJ, Wong P. Validity, reliability and stability of the portable Cortex Metamax 3B gas analysis system. University of Hong Kong. 2011; 25–39.
15.
Hartmann B, Spallek M, Ellegast R. Arbeitsbezogene Muskel- und Skeletterkrankungen. Ecomed, 2013.
16.
Biesalski H, Grimm P, Nowitzki-Grimm S. Taschenatlas Ernährung. 6th ed. Stuttgart, Thieme Verlag KG, 2015.
19.
Reichelt A. Komplementärmedizin – Kompendium. https://books.google.at/books?.... (access: 2015.7.22).
20.
Spomedial. Die maximale Sauerstoffaufnahme (VO 2max ). http://www.dshs-koeln.de/imb/s.... (access: 2015.6.12).
21.
Nevala-Puranen N, Kallionpää M, Ojanen K. Physical load and strain in parlor milking. International Journal of Industrial Ergonomics. 1996; 18: 277–282.
22.
Anastasopoulou P, Tubic M, Schmidt S, Neumann R, Woll A, Härtel S, et al. Validation and comparison of two methods to assess human energy expenditure during free-living activities. In: Gabrys L, Thiel C, Tallner A, Wilms B, Müller C, Kahlert D, Jekauc D, Frick F, Schulz H, Sprengeler O, Hey S, Kobel S und Vogt L. Akzelerometrie zur Erfassung körperlicher Aktivität–Empfehlungen zur Methodik. Sport-wissenschaft. 2015;45(1). p. 1–9.
23.
Preece SJ, Goulermas JY, Kenney LPJ, Howard D, Meijer K, Crompton R. Activity identification using body-mounted sensors–a review of classification techniques. In: Gabrys L, Thiel C, Tallner A, Wilms B, Müller C, Kahlert D, et al. Akzelerometrie zur Erfassung körperlicher Aktivität – Empfehlungen zur Methodik. Sportwissenschaft. 2015; 45(1). p.1–9.
24.
Von Haaren B, Gnam J, Härtel S, Löffler S, Helmhold S, Anastasopoulou P, et al. Energieumsatzmessung mit Aktivitätssensoren – Validität des kmsMove-Akzelerometers. In: Proceedings of the Jahrestagung der dvs-Kommission Gesundheit; 2011 Feb 16–17; Karlsruhe, Germany. Karlsruhe: 2011.
RELATED ARTICLE