RESEARCH PAPER
Analysis of Fraxinus pollen seasons and forecast models based on meteorological factors
 
More details
Hide details
1
Department of Applied Mathematics and Computer Science, University of Life Sciences, Lublin, Poland
 
2
Department of Botany, University of Life Sciences, Lublin, Poland
 
3
Department of Meteorology and Climatology, Maria Skłodowska-Curie University, Lublin, Poland
 
 
Corresponding author
Krystyna Piotrowska-Weryszko   

Department of Botany, University of Life Sciences, Akademicka 15, 20-095 Lublin, Poland
 
 
Ann Agric Environ Med. 2018;25(2):285-291
 
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
The timings of Fraxinus and Betula flowering and pollen release overlap, which may cause increased allergic reactions in sensitive people. The aim of the present study was to characterize Fraxinus pollen seasons in Lublin (central-eastern Poland) and to identify meteorological factors that most determine the occurrence of airborne pollen of this taxon, as well as obtain forecast models for the basic characteristics of the pollen season.

Material and methods:
The study was conducted in Lublin during the period 2001–2016, employing the volumetric method. The seasons were compared by PCA (Principal Component Analysis). To determine relationships between meteorological conditions and the pattern of pollen seasons, regression analysis was used. Data for the period 2001–2015 were used to create forecast models by applying regression analysis, while the 2016 data served to verify these models.

Results:
Season end date and seasonal peak date were characterized by the lowest variation. The biggest differences were found for peak value and total annual pollen sum. The average dates of occurrence of ash pollen grains in the air of Lublin were between 13 April 13 – 3 May 3, whereas, on average, the pollen peak date occurred on 23 April. The factor loading values for the PC1 variable indicate that it is most strongly correlated with peak value and total pollen sum, while the PC2 variable correlated with the pollen season start date and season duration (a negative correlation). Regression models were developed for the following pollen season characteristics: season start, end and duration, seasonal peak date, and total annual pollen sum.

Conclusions:
The fit of the forecast models was at the level of 62–94%. Analysis of the data showed that weather conditions mainly in February were important factors controlling the Fraxinus pollen season.

 
REFERENCES (45)
1.
Seneta W, Dolatowski J. Dendrologia. Warszawa: Państwowe Wydawnictwo Naukowe; 2007.
 
2.
Szweykowska A, Szweykowski J. (Eds) Słownik botaniczny. Warszawa: Państwowe Wydawnictwo Wiedza Powszechna; 2003.
 
3.
FRAXIGEN (2005) Ash species in Europe: biological characteristics and practical guidelines for sustainable use. Oxford Forestry Institute, University of Oxford, UK. 128 pp. ISBN: 0 85074 163 7.
 
5.
Dyakowska J. Podręcznik palynologii, Metody i problemy. Wydawnictwa Geologiczne. Warszawa, 1959.
 
6.
Scheifinger H, Belmonte J, Buters J, Celenk S, Damialis A, Dechamp C, et al. Monitoring, modelling and forecasting of the pollen season. In: Sofiev M, Bergmann K-C, editors. Allergenic pollen, Springer Dordrecht Heidelberg New York London 2013. p. 71–126.
 
7.
Hemmer W, Focke M, Wantke F, Götz M, Jarisch R, Jäger S. Ash (Fraxinus excelsior) – pollen allergy in central Europe: Specific role of pollen panallergens and the major allergen of ash pollen, Fra e 1. Allergy 2000; 55: 923–930.
 
8.
Wüthrich B. Esche ist nicht Esche. Allergologie 2006; 29(6): 231–235.
 
9.
Vara A, Fernandez-Gonzalez M, Aira MJ, Rodriguez-Rajo FJ. Oleaceae cross-reactions as potential pollinosis cause in urban areas. Science of the Total Environment 2016; 542: 435–440.
 
10.
Guerra F, Galan C, Daza JC, Miguel R, Moreno C, Gonzalez J, Dominguez E. Study of sensitivity to the pollen of Fraxinus spp. (Oleaceae) in Cordoba, Spain. J Invest Allergol Clin Immunol. 1995; 5(3): 166–170.
 
11.
Samoliński B, Raciborski F, Lipiec A, Tomaszewska A, Krzych-Fałta E, Samel-Kowalik P, et al. Epidemiologia Chorób Alergicznych w Polsce (ECAP). Alergol Pol. 2014; 1: 10–18.
 
12.
Sharifshoushtari M, Majd A, Moin M, Nejadsattari T, Pourpak Z, Khademi R, et al. Ultra structural orbicules released in ash (Fraxinus excelsior) pollen grains and their possible role in allergic respiratory. Allergy 2016; 71 (Suppl. 102): 191–192.
 
13.
Kasprzyk I, Uruska A, Szczepanek K, Latałowa M, Gaweł J, Harmata K, Myszkowska D, Stach A, Stępalska D. Regional differentiation in the dynamics of the pollen seasons of Alnus, Corylus and Fraxinus in Poland (preliminary results). Aerobiologia 2004; 20: 141–151.
 
14.
Weryszko-Chmielewska E, Puc M, Piotrowska K. Effect of meteorological factors on Betula, Fraxinus and Quercus pollen concentrations in the atmosphere of Lublin and Szczecin, Poland. Ann Agric Environ Med. 2006; 13: 243–249.
 
15.
Puc M. Influence of meteorological parameters and air pollution on hourly fluctuation of birch (Betula L.) and ash (Fraxinus L.) airborne pollen. Ann Agric Environ Med. 2012; 19(4): 660–665.
 
16.
Horak F, Hussarke M, Jäger S, Skoda-Türk R. Die Bestimmung der Aggressivität allergisierender Pollenarten. Wiener klinische Wochen-schrift. 1979; 92: 161–164.
 
17.
Frenz DA. Interpreting atmospheric pollen counts for use in clinical allergy: allergic symptomology. Ann Allergy Asthma Immunol. 2001; 86: 150–158.
 
18.
Stach A, Smith M, Prieto Baena JC, Emberlin J. Long-term and short-term forecast models for Poaceae (grass) pollen in Poznan, Poland, constructed using regression analysis. Environmental and Experimental Botany 2008; 62: 323–332.
 
19.
Piotrowska K. Forecasting the Poaceae pollen season in eastern Poland. Grana. 2012; 51(4): 263–269.
 
20.
Myszkowska D. Prediction of the birch pollen season characteristics in Cracow, Poland using an 18-year data series. Aerobiologia 2013; 29(1): 31–44.
 
21.
Piotrowska K, Kubik-Komar A. The effect of meteorological factors on airborne Betula pollen concentrations in Lublin (Poland). Aerobiologia 2012; 28: 467–479.
 
22.
Piotrowska K, Kubik-Komar A. A comparative analysis of Poaceae pollen seasons in Lublin (Poland). Acta Agrobot. 2012; 65(4): 39–48.
 
23.
Mandrioli P, Comtois P, Dominguez Vilches E, Galan Soldevilla C, Syzdek L, et al. Sampling: principles and techniques. In: Mandrioli P, Comtois P, Levizzani V, editors. Methods in Aerobiology. Pitagora Editrice Bologna, Bologna. 1998.
 
24.
Andersen TB. A model to predict the beginning of the pollen season. Grana. 1991; 30: 269–275.
 
25.
Krzyśko M. Multivariate Statistical Analysis. UAM – Poznań, 2000.
 
26.
Grala-Michalak J, Kaźmierczak K. The approximation of tree volume based on measurements of biometric features of standing scots pine trees. Colloquium Biometricum. 2013; 43: 5–11.
 
27.
Jakubus M, Graczyk M. Evaluation of the usability of single extractors in chemical analysis of composts using principal component analysis. Biometrical Letters. 2015; 52(2): 115–130.
 
28.
Kernerman SM, McCullough J, Green J, Ownby DR. Evidence of cross-reactivity between olive, ash, privet, and Russian olive tree pollen allergens. Ann Allergy. 1992; 69(6): 493–496.
 
29.
Niederberger V, Purohit A, Oster JP, Spitzauer S, Valenta R, Pauli G. The allergen profile of ash (Fraxinus excelsior) pollen: cross-reactivity with allergens from various plant species. Clin Exp Allergy. 2002; 32: 933–941.
 
30.
Geburek T, Hiess K, Litschauer R, Milasowszky N. Temporal pollen pattern in temperate trees: expedience or fate? Oikos. 2012; 121: 1603–1612.
 
31.
Barderas R, Purohit A, Papanikolaou I, Rodriguez R, Pauli G, Villalba M. Cloning, expression, and clinical significance of the major allergen from ash pollen, Fra e 1. J Allergy Clin Immunol. 2005; 115: 351–357.
 
32.
Gastaminza G, Bartolome B, Bernedo N, Uriel O, Audicana MT, Echenagusia MA, et al. Oleaceae pollen allergy in a place where there’s no olive trees. Alergol Immunol Clin. 2005; 20(4): 131–138.
 
33.
Stefanic E, Rasic S, Merdic S, Colakovic K. Annual variation of airborne pollen in the city of Vinkovci, Northeastern Croatia. Ann Agric Environ Med. 2007; 14: 97–101.
 
34.
Weryszko-Chmielewska E. (Ed.) Pyłek roślin w aeroplanktonie różnych regionów Polski. Wyd. Katedry i Zakładu Farmakognozji AM w Lublinie; 2006.
 
35.
Lipiec A, Weryszko-Chmielewska E, Piotrowska K, Chłopek K, Malkiewicz M, Puc M, et al. Analiza stężenia pyłku jesionu w wybranych miastach Polski w 2007 r. Alergoprofil. 2007; 3(3): 50–54.
 
36.
Puc M, Rapiejko P, Myszkowska D, Weryszko-Chmielewska E, Piotrowska K, Chłopek K, et al. Pyłek jesionu w powietrzu wybranych miast Polski w roku 2008. Alergoprofil 2008; 4(3): 35–39.
 
37.
Cosmes MPM, Moreno AA, Dominiguez NC, Gutierrez VA, Belmonte SJ, Roure NJM. Sensitization to Castanea sativa pollen and pollinosis in northern Extremadura (Spain). Allergol Immunopathol. 2005; 33(3): 145–150.
 
38.
Schmid-Grendelmeier P, Peeters AG, Wahl R, Wüthrich P. Zur Bedeutung der Eschenpollenallergie. Allergologie 1994; 17: 535–542.
 
39.
Colombo V. Zum Sensibilisierungsspektrum von Pollenallergikern im Kanton Tessin. Eine prospektive Studie In Locarno Und Lugano 2009. Thesis. Zurich: University of Zurich 2010.
 
40.
Rapiejko P. Alergeny pyłku jesionu. Alergoprofil. 2008; 4(1): 46–48.
 
41.
Galan C, Garcia-Mozo H, Carinanos P, Alcazar P, Dominguez-Vilches E. The role of temperature in the onset of the Olea europea L. pollen season in southwestern Spain. Int J Biometeorol. 2001; 45(1): 8–12.
 
42.
Piotrowska-Weryszko K. The effect of the meteorological factors on the Alnus pollen season in Lublin (Poland). Grana. 2013; 52: 221–228.
 
43.
Laaidi M. Forecasting the start of the pollen season of Poaceae: evaluation of some methods based on meteorological factors. Int J Biometeorol. 2001; 45:1–7.
 
44.
Smith M, Emberlin J. Constructing a 7-day ahead forecast model for grass pollen at north London, United Kingdom. Clin Exp Allergy. 2005; 35: 1400–1406.
 
45.
Piotrowska-Weryszko K. Artemisia pollen in the air of Lublin, Poland (2001–2012). Acta Sci Pol, Hortorum Cultus. 2013; 12(5): 155–168.
 
eISSN:1898-2263
ISSN:1232-1966
Journals System - logo
Scroll to top