Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part II – Pathogenesis
More details
Hide details
Department of Health Biohazards and Parasitology, Institute of Rural Health, Lublin, Poland
Department of Parasitology, National Veterinary Research Institute, Puławy, Poland
Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Puławy, Poland
Corresponding author
Jacek Dutkiewicz   

Department of Health Biohazards and Parasitology, Institute of Rural Health, Lublin, Poland, Jaczewskiego 2, 20-090 Lublin, Poland
Ann Agric Environ Med. 2018;25(1):186-203
Streptococcus suis is a re-emerging zoonotic pathogen that may cause severe disease, mostly meningitis, in pigs and in humans having occupational contact with pigs and pork, such as farmers, slaughterhose workers and butchers. The first stage of the pathogenic process, similar in pigs and humans, is adherence to and colonisation of mucosal and/or epithelial surface(s) of the host. The second stage is invasion into deeper tissue and extracellular translocation of bacterium in the bloodstream, either free in circulation or attached to the surface of monocytes. If S. suis present in blood fails to cause fatal septicaemia, it is able to progress into the third stage comprising penetration into host’s organs, mostly by crossing the blood-brain barrier and/or blood–cerebrospinal fluid barrier to gain access to the central nervous system (CNS) and cause meningitis. The fourth stage is inflammation that plays a key role in the pathogen esis of both systemic and CNS infections caused by S. suis. The pathogen may induce the overproduction of pro-inflammatory cytokines that cause septic shock and/or the recruitment and activation of different leukocyte populations, causing acute inflammation of the CNS. Streptococcus suis can also evoke – through activation of microglial cells, astrocytes and possibly other cell types – a fulminant inflammatory reaction of the brain which leads to intracranial complications, including brain oedema, increased intracranial pressure, cerebrovascular insults, and deafness, as a result of cochlear sepsis. In all stages of the pathogenic process, S. suis interacts with many types of immunocompetent host’s cells, such as polymorphonuclear leukocytes, mononuclear macrophages, lymphocytes, dendritic cells and microglia, using a range of versatile virulence factors for evasion of the innate and adaptive immune defence of the host, and for overcoming environmental stress. It is estimated that S. suis produces more than 100 different virulence factors that could be classified into 4 groups: surface components or secreted elements, enzymes, transcription factors or regulatory systems and transporter factors or secretion systems. A major virulence factor is capsular polysaccharide (CPS) that protects bacteria from phagocytosis. However, it hampers adhesion to and invasion of host’s cells, release of inflammatory cytokines and formation of the resistant biofilm which, in many cases, is vital for the persistence of bacteria. It has been demonstrated that the arising by mutation unencapsulated S. suis clones, which are more successful in penetration to and propagation within the host’s cells, may coexist in the organism of a single host together with those that are encapsulated. Both ‘complementary’ clones assist each other in the successful colonization of host’s tissues and persistence therein. S. suis has an open pan-genome characterized by a frequent gene transfer and a large diversity. Of the genetic determinants of S. suis pathogenicity, the most important are pathogenicity islands (PAI), in particular, a novel DNA segment of 89 kb length with evident pathogenic traits that has been designated as 89K PAI. It has been estimated that more than one-third of the S. suis virulence factors is associated with this PAI. It has been proved that the virulent S. suis strains possess smaller genomes, compared to avirulent ones, but more genes associated with virulence. Overall, the evolution of the species most probably aims towards increased pathogenicity, and hence the most significant task of the current research is an elaboration of a vaccine, efficient both for humans and pigs.
Gottschalk M, Xu J, Calzas C, Segura M. Streptococcus suis: a new emerging or an old neglected zoonotic pathogen? Future Microbiol. 2010; 5(3): 371–391.
Fittipaldi N, Segura M, Grenier D, Gottschalk M. Virulence factors involved in the pathogenesis of the infection caused by the swine pathogen and zoonotic agent Streptococcus suis. Future Microbiol. 2012; 7(2): 259–79.
Fulde M, Valentin-Weigand P. Epidemiology and pathogenicity of zoonotic streptococci. Curr Top Microbiol Immunol. 2013; 368: 49–81.
Feng Y, Zhang H, Wu Z, Wang S, Cao M, Hu D, Wang C. Streptococcus suis infection: an emerging/reemerging challenge of bacterial infectious diseases? Virulence. 2014; 5(4): 477–497.
Dutkiewicz J, Sroka J, Zając V, Wasiński B, Cisak E, Sawczyn A, Kloc A, Wójcik-Fatla A. Streptococcus suis: a re-emerging pathogen associated with occupational exposure to pigs or pork products. Part I. Epidemiology. Ann Agric Environ Med. 2017; 24(4): 683–695.
Segura M, Calzas C, Grenier D, Gottschalk M. Initial steps of the pathogenesis of the infection caused by Streptococcus suis: fighting against nonspecific defenses. FEBS Lett. 2016; 590(21): 3772–3799.
Kouki A, Pieters RJ, Nilsson UJ, Loimaranta V, Finne J, Haataja S. Bacterial adhesion of Streptococcus suis to host cells and its inhibition by carbohydrate ligands. Biology (Basel). 2013; 2(3): 918–935.
Auger JP, Gottschalk M. The Streptococcus suis factor H-binding protein: A key to unlocking the blood-brain barrier and access the central nervous system? Virulence. 2017; 8 (7): 1081–1084, doi: 10.1080/21505594.2017.1342027.
Ferrando ML, de Greeff A, van Rooijen WJ, Stockhofe-Zurwieden N, Nielsen J, Wichgers Schreur PJ, Pannekoek Y, Heuvelink A, van der Ende A, Smith H, Schultsz C. Host-pathogen interaction at the intestinal mucosa correlates with zoonotic potential of Streptococcus suis. J Infect Dis. 2015; 212(1): 95–105.
Segura M, Fittipaldi N, Calzas C, Gottschalk M. Critical Streptococcus suis virulence factors: are they all really critical? Trends Microbiol. 2017; 25(7): 585–599.
Gottschalk M, Segura M, Xu J. Streptococcus suis infections in humans: the Chinese experience and the situation in North America. Anim Health Res Rev. 2007; 8(1): 29–45.
Liu H, Zhu S, Sun Y, Li N, Gu J, Sun C, Feng X, Han W, Jiang JX, Lei L. Selection of potential virulence factors contributing to Streptococcus suis Type 2 penetration into the Blood Brain Barrier in an in vitro co-culture model. J Microbiol Biotechnol. 2017; 27(1): 161–170.
Kong D, Chen Z, Wang J, Lv Q, Jiang H, Zheng Y, Xu M, Zhou X, Hao H, Jiang Y. Interaction of factor H-binding protein of Streptococcus suis with globotriaosylceramide promotes the development of meningitis. Virulence 2017; 8(7): 1290–1302.
Strangmann E, Fröleke H, Kohse KP. Septic shock caused by Streptococcus suis: case report and investigation of a risk group. Int J Hyg Environ Health. 2002; 205(5): 385–392.
Domínguez-Punaro MC, Koedel U, Hoegen T, Demel C, Klein M, Gottschalk M. Severe cochlear inflammation and vestibular syndrome in an experimental model of Streptococcus suis infection in mice. Eur J Clin Microbiol Infect Dis. 2012; 31(9): 2391–2400.
Segura M. Fisher scientific award lecture – the capsular polysaccharides of Group B Streptococcus and Streptococcus suis differently modulate bacterial interactions with dendritic cells. Can J Microbiol. 2012; 58(3): 249–260.
Houde M, Gottschalk M, Gagnon F, Van Calsteren MR, Segura M. Streptococcus suis capsular polysaccharide inhibits phagocytosis through destabilization of lipid microdomains and prevents lactosylceramide-dependent recognition. Infect Immun. 2012; 80(2): 506–517.
Roy D, Auger JP, Segura M, Fittipaldi N, Takamatsu D, Okura M, Gottschalk M. Role of the capsular polysaccharide as a virulence factor for Streptococcus suis serotype 14. Can J Vet Res. 2015; 79(2): 141–146.
Ye C, Zheng H, Zhang J, Jing H, Wang L, Xiong Y, Wang W, Zhou Z, Sun Q, Luo X, Du H, Gottschalk M, Xu J. Clinical, experimental, and genomic differences between intermediately pathogenic, highly pathogenic, and epidemic Streptococcus suis. J Infect Dis. 2009; 199(1): 97–107.
De Buhr N, Neumann A, Jerjomiceva N, von Köckritz-Blickwede M, Baums CG. Streptococcus suis DNase SsnA contributes to degradation of neutrophils extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. Microbiology. 2014; 160(2): 385–395.
De Buhr N, Stehr M, Neumann A, Naim HY, Valentin-Weigand P, von Köckritz-Blickwede M, Baums CG. Identification of a novel DNase of Streptococcus suis (EndAsuis) important for neutrophil extracellular trap degradation during exponential growth. Microbiology. 2015; 161(4): 838–850.
De Buhr N, Reuner F, Neumann A, Stump-Guthier C, Tenenbaum T, Schroten H, Ishikawa H, Müller K, Beineke A, Hennig-Pauka I, Gutsmann T, Valentin-Weigand P, Baums CG(, von Köckritz-Blickwede M. Neutrophil extracellular trap formation in the Streptococcus suis-infected cerebrospinal fluid compartment. Cell Microbiol. 2017; 19(2). doi: 10.1111/cmi.12649.
Lecours MP, Segura M, Lachance C, Mussa T, Surprenant C, Montoya M, Gottschalk M. Characterization of porcine dendritic cell response to Streptococcus suis. Vet Res. 2011; 42:72. doi: 10.1186/1297-9716-42-72.
Merad M, Sathe P, Helft J, Miller J, Mortha A. The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol. 2013; 31. doi:10.1146/annurev-immunol-020711-074950.
Lecours MP, Segura M, Fittipaldi N, Rivest S, Gottschalk M. Immune receptors involved in Streptococcus suis recognition by dendritic cells. PloS One. 2012; 7(9): e44746. doi: 10.1371/journal.pone.0044746.
Lecours MP, Letendre C, Clarke D, Lemire P, Galbas T, Benoit-Biancamano MO, Thibodeau J, Gottschalk M, Segura M. Immune-responsiveness of CD4 + T cells during Streptococcus suis serotype 2 infection. Sci Rep. 2016; 6: 38061, doi: 10.1038/srep38061.
Lemire P, Galbas T, Thibodeau J, Segura M. Natural Killer Cell functions during the innate immune response to pathogenic streptococci. Front Microbiol. 2017; 8: 1196. doi: 10.3389/fmicb.2017.01196.
Martelet L, Lacouture S, Goyette-Desjardins G, Beauchamp G, Surprenant C, Gottschalk M, Segura M. Porcine dendritic cells as an in vitro model to assess the immunological behaviour of Streptococcus suis subunit vaccine formulations and the polarizing effect of adjuvants. Pathogens. 2017; 6, 13. doi: 10.3390/pathogens6010013.
Perry VH, Teeling J. Microglia and macrophages of the central nervous system: the contribution of microglia priming and systemic inflammation to chronic neurodegeneration. Semin Immunopathol. 2013; 35: 601–612.
Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010; 119: 7–35.
Domínguez-Punaro MC, Segura M, Plante MM, Lacouture S, Rivest S, Gottschalk M. Streptococcus suis serotype 2, an important swine and human pathogen, induces strong systemic and cerebral inflammatory responses in a mouse model of infection. J Immunol. 2007; 179(3): 1842–1854.
Domínguez-Punaro ML, Segura M, Contreras I, Lachance C, Houde M, Lecours MP, Olivier M, Gottschalk M. In vitro characterization of the microglial inflammatory response to Streptococcus suis, an important emerging zoonotic agent of meningitis. Infect Immun. 2010; 78(12): 5074–5085.
Zheng H, Sun H, Dominguez-Punaro ML, Bai X, Ji S, Segura M, Xu J. Evaluation of the pathogenesis of meningitis caused by Streptococcus suis sequence type 7 using the infection of BV2 microglial cells. J Med Microbiol. 2013; 62: 360–368.
Seele J, Nau R, Prajeeth CK, Stangel M, Valentin-Weigand P, Seitz M. Astrocytes enhance Streptococcus suis-glial cell interaction in primary astrocyte-microglial cell co-cultures. Pathogens. 2016; 5: 43. doi: 10.3390/pathogens5020043.
Zhao Y, Liu G, Li S, Wang M, Song J, Wang J, Tang J, Li M, Hu F. Role of a type IV-like secretion system of Streptococcus suis 2 in the development of streptococcal toxic shock syndrome. J Infect Dis. 2011; 204(2): 274–281.
Jiang X, Yang Y, Zhou J, Zhu L, Gu Y, Zhang X, Li X, Fang W. Roles of the putative type IV-like secretion system key component VirD4 and PrsA in pathogenesis of Streptococcus suis Type 2. Front Cell Infect Microbiol. 2016; 6:172. doi: 10.3389/fcimb.2016.00172.
Charland N, Harel J, Kobisch M, Lacasse S, Gottschalk M. Streptococcus suis serotype 2 mutants deficient in capsular expression. Microbiology 1998; 144: 325–332.
Smith HE, Damman M, van der Velde J, Wagenaar F, Wisselink HJ, Stockhofe-Zurwieden N, Smits MA. Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect Immun. 1999; 67(4): 1750–1756.
Vecht U, Wisselink HJ, Jellema ML, Smith HE. Identification of two proteins associated with virulence of Streptococcus suis type 2. Infect Immun. 1991; 59(9): 3156–3162.
Jacobs AAC, Loeffen PLW, van den Berg AJG, Storm PK. Identification, purification, and characterization of a thiol-activated hemolysin (suilysin) of Streptococcus suis. Infect Immun. 1994; 62: 1742–1748.
Gottschalk MG, Lacouture S, Dubreuil JD. Characterization of Streptococcus suis capsular type 2 haemolysin. Microbiology. 1995; 141: 189–195.
Gomez E, Kennedy CC, Gottschalk M, Cunningham SA, Patel R, Virk A. Streptococcus suis-related prosthetic joint infection and streptococcal toxic shock-like syndrome in a pig farmer in the United States. J Clin Microbiol. 2014; 52(6): 2254–2258.
Okura M, Takamatsu D, Maruyama F, Nozawa T, Nakagawa I, Osaki M, Sekizaki T, Gottschalk M, Kumagai Y, Hamada S. Genetic analysis of capsular polysaccharide synthesis gene clusters from all serotypes of Streptococcus suis: potential mechanisms for generation of capsular variation. Appl Environ Microbiol. 2013; 79(8): 2796–2806.
Lakkitjaroen N, Takamatsu D, Okura M, Sato M, Osaki M, Sekizaki T. Capsule loss or death: the position of mutations among capsule genes sways the destiny of Streptococcus suis. FEMS Microbiol Lett. 2014; 354(1): 46–54.
Calzas C, Goyette-Desjardins G, Lemire P, Gagnon F, Lachance C, Van Calsteren MR, Segura M. Group B Streptococcus and Streptococcus suis capsular polysaccharides induce chemokine production by dendritic cells via Toll-like receptor 2- and MyD88-dependent and –independent pathways. Infect Immun. 2013; 81(9): 3106–3118.
Calzas C, Lemire P, Auray G, Gerdts V, Gottschalk M, Segura M. Antibody response specific to the capsular polysaccharide is impaired in Streptococcus suis serotype 2-infected animals. Infect Immun. 2015; 83(1): 441–453.
Calzas C, Taillardet M, Fourati IS, Roy D, Gottschalk M, Soudeyns H, Defrance T, Segura M. Evaluation of the immunomodulatory properties of Streptococcus suis and Group B Streptococcus capsular polysaccharides on the humoral response. Pathogens. 2017; 6(2). Pii: E16. doi: 10.3390/pathogens6020016.
Auger JP, Meekhanon N, Okura M, Osaki M, Gottschalk M, Sekizaki T, Takamatsu D. Streptococcus suis serotype 2 capsule in vivo. Emerg Infect Dis. 2016; 22(10): 1793–1796.
Tohya M, Watanabe T, Maruyama F, Arai S, Ota A, Athey TB, Fittipaldi N, Nakagawa I, Sekizaki T. Comparative genome analyses of Streptococcus suis isolates from endocarditis demonstrate persistence of dual phenotypic clones. PloS One. 2016; 11(7): e0159558. doi: 10.1371/journal.pone.0159558.
Wang Y, Gagnon CA, Savard C, Music N, Srednik M, Segura M, Lachance C, Bellehumeur C, Gottschalk M. Capsular sialic acid of Streptococcus suis serotype 2 binds to swine influenza virus and enhances bacterial interactions with virus-infected tracheal epithelial cells. Infect Immun. 2013; 81(12): 4498–4508.
Patenge N, Fiedler T, Kreikemeyer B. Common regulators of virulence in streptococci. Curr Top Microbiol Immunol. 2013; 368: 111–153.
Haas B, Bonifait L, Vaillancourt K, Charette SJ, Marcelo Gottschalk M, Grenier D. Characterization of Dnase activity and gene in Streptococcus suis and evidence for a role as virulence Factor. BMC Research Notes 2014; 7:424, doi: 10.1186/1756-0500-7-424.
Seele J, Singpiel A, Spoerry C, von Pawel-Rammingen U, Valentin-Weigand P, Baums CG. Identification of a novel host-specific IgM protease in Streptococcus suis. J Bacteriol. 2013; 195(5): 930–940.
Seele J, Beineke A, Hillermann LM, Jaschok-Kentner B, von Pawel-Rammingen U, Valentin-Weigand P, Baums CG. The immunoglobulin M-degrading enzyme of Streptococcus suis, IdeSsuis, is involved in complement evasion. Vet Res. 2015; 46: 45. doi: 10.1186/s13567-015-0171-6.
Seele J, Hillermann LM, Beineke A, Seitz M, von Pawel-Rammingen U, Valentin-Weigand P, Baums CG. The immunoglobulin M-degrading enzyme of Streptococcus suis, IdeSsuis, is a highly protective antigen against serotype 2. Vaccine. 2015; 33(19): 2207–2212.
Spoerry C, Seele J, Valentin-Weigand P, Baums CG, von Pawel-Rammingen U. Identification and characterization of IgdE, a novel IgG-degrading protease of Streptococcus suis with unique specificity for porcine IgG. J Biol Chem. 2016; 291(15): 7915–7925.
Gao T, Tan M, Liu W, Zhang C, Zhang T, Zheng L, Zhu J, Li L, Zhou R. GidA, a tRNA modification enzyme, contributes to the growth, and virulence of Streptococcus suis serotype 2. Front Cell Infect Microbiol. 2016; 6:44. doi: 10.3389/fcimb.2016.00044.
Feng L, Zhu J, Chang H, Gao X, Gao C, Wei X, Yuan F, Bei W. The CodY regulator is essential for virulence in Streptococcus suis serotype 2. Sci Rep. 2016; 6:21241. doi: 10.1038/srep21241.
Ji X, Sun Y, Liu J, Zhu L, Guo X, Lang X, Feng S. A novel virulence-associated protein, vapE, in Streptococcus suis serotype 2. Mol Med Rep. 2016; 13(3): 2871–2877.
Zhu J, Zhang T, Su Z, Li L, Wang D, Xiao R, Teng M, Tan M, Zhou R. (p)ppGpp synthetases regulate the pathogenesis of zoonotic Streptococcus suis. Microbiol Res. 2016; 191:1–11.
Tan MF, Liu WQ, Zhang CY, Gao T, Zheng LL, Qiu DX, Li L, Zhou R. The involvement of MsmK in pathogenesis of the Streptococcus suis serotype 2. Microbiology Open. 2017; 6(2). doi: 10.1002/mbo3.433.
Yuan F, Tan C, Liu Z, Yang K, Zhou D, Liu W, Duan Z, Guo R, Chen H, Tian Y, Bei W. The 1910HK/RR two-component system is essential for the virulence of Streptococcus suis serotype 2. Microb Pathog. 2017; 104: 137–145.
Zhang C, Sun W, Tan M, Dong M, Liu W, Gao T, Li L, Xu Z, Zhou R. The eukaryote-like serine/threonine kinase STK regulates the growth and metabolism of zoonotic Streptococcus suis. Front Cell Infect Microbiol. 2017; 7:66. doi: 10.3389/fcimb.2017.00066.
Ferrando ML, Willemse N, Zaccaria E, Pannekoek Y, van der Ende A, Schultsz C. Streptococcal Adhesin P (SadP) contributes to Streptococcus suis adhesion to the human intestinal epithelium. PloS One. 2017; 12(4): e0175639. doi: 10.1371/journal.pone.0175639.
Lai L, Dai J, Tang H, Zhang S, Wu C, Qiu W, Lu C, Yao H, Fan H, Wu Z. Streptococcus suis serotype 9 strain GZ0565 contains a type VII secretion system putative substrate EsxA that contributes to bacterial virulence and a vanZ-like gene that confers resistance to teicoplanin and dalbavancin in Streptococcus agalactiae. Vet Microbiol. 2017; 205: 26–33.
Xu J, Zheng C, Cao M, Zeng T, Zhao X, Shi G, Chen H, Bei W. The manganese efflux system MntE contributes to the virulence of Streptococcus suis serotype 2. Microb Pathog. 2017; 110: 23–30.
Wang J, Feng Y, Wang C, Srinivas S, Chen C, Liao H, He E, Jiang S, Tang J. Pathogenic Streptococcus strains employ novel escape strategy to inhibit bacteriostatic effect mediated by mammalian peptidoglycan recognition protein. Cell Microbiol. 2017. doi: 10.1111/cmi.12724.
Wan Y, Zhang S, Li L, Chen H, Zhou R. Characterization of a novel streptococcal heme-binding protein SntA and its interaction with host antioxidant protein AOP2. Microb Pathog. 2017; 111: 145–155.
Zhang Q, Huang J, Yu J, Xu Z, Liu L, Song Y, Sun X, Zhang A, Jin M. HP1330 contributes to Streptococcus suis virulence by inducing Toll-Like Receptor 2- and ERK1/2-dependent pro-inflammatory responses and influencing in vivo S. suis loads. Front Immunol. 2017; 8: 869. doi: 10.3389/fimmu.2017.00869.
Chen C, Tang J, Dong W, Wang C, Feng Y, Wang J, Zheng F, Pan X, Liu D, Li M, et al. A glimpse of streptococcal toxic shock syndrome from comparative genomics of S. suis 2 Chinese isolates. PloS One. 2007; 2(3): e315. doi: 10.1371/journal.pone.0000315.
Li M, Shen X, Yan J, Han H, Zheng B, Liu D, Cheng H, Zhao Y, Rao X, Wang C, Tang J, Hu F, Gao GF. GI-type T4SS-mediated horizontal transfer of the 89K pathogenicity island in epidemic Streptococcus suis serotype 2. Mol Microbiol. 2011; 79(6): 1670–1683.
Kerdsin A, Dejsirilert S, Puangpatra P, Sripakdee S, Chumla K, Boonkerd N, Polwichai P, Tanimura S, Takeuchi D, Nakayama T et al. Genotypic profile of Streptococcus suis serotype 2 and clinical features of infection in humans, Thailand. Emerg Infect Dis. 2011; 17(5): 835–842.
Zheng JX, Li Y, Zhang H, Fan HJ, Lu CP. Identification and characterization of a novel hemolysis-related gene in Streptococcus suis serotype 2. PloS One. 2013; 8(9): e74674. doi: 10.1371/journal.pone.0074674.
Segura M, Zheng H, de Greeff A, Gao GF, Grenier D, Jiang Y, Lu C, Maskell D, Oishi K, Okura M et al. Latest developments on Streptococcus suis: an emerging zoonotic pathogen: part 2. Future Microbiol. 2014; 9(5): 587–591.
Weinert LA, Chaudhuri RR, Wang J, Peters SE, Corander J, Jombart T, Baig A, Howell KJ, Vehkala M, Välimäki N et al. Genomic signatures of human and animal disease in the zoonotic pathogen Streptococcus suis. Nat Commun. 2015; 6:6740. doi: 10.1038/ncomms7740.|.
Willemse N, Howell KJ, Weinert LA, Heuvelink A, Pannekoek Y, Wagenaar JA, Smith HE, van der Ende A, Schultsz C. An emerging zoonotic clone in the Netherlands provides clues to virulence and zoonotic potential of Streptococcus suis. Sci Rep. 2016; 6: 28984. doi: 10.1038/srep28984.
Okura M, Nozawa T, Watanabe T, Murase K, Nakagawa I, Takamatsu D, Osaki M, Sekizaki T, Gottschalk M, Hamada S, Maruyama F. A locus encoding variable defence systems against invading DNA identified in Streptococcus suis. Genome Biol Evol. 2017; 9(4): 1000–1012.
Baig A, Weinert LA, Peters SE, Howell KJ, Chaudhuri RR, Wang J, Holden MT, Parkhill J, Langford PR, Rycroft AN, Wren BW, Tucker AW, Maskell DJ. Whole genome investigation of a divergent clade of the pathogen Streptococcus suis. Front Microbiol. 2015; 6: 1191. doi: 10.3389/fmicb.2015.01191.
Shi X, Ye H, Wang J, Li Z, Wang J, Chen B, Wen R, Hu Q, Feng Y. Loss of 89K Pathogenicity Island in Epidemic Streptococcus suis, China. Emerg Infect Dis. 2016; 22(6): 1126–1127.
Wikipedia. Thomas Bayes.
Wikipedia. Bayesian inference.
Du P, Zheng H, Zhou J, Lan R, Ye C, Jing H, Jin D, Cui Z, Bai X, Liang J, Liu J, Xu L, Zhang W, Chen C, Xu J. Detection of multiple parallel transmission outbreak of Streptococcus suis human infection by use of genome epidemiology, China, 2005. Emerg Infect Dis. 2017; 23 (2): 2014–2211.
Dawei G, Liping W, Chengping L. In vitro biofilms forming potential of Streptococcus suis isolated from human and swine in China. Braz J Microbiol. 2012; 43(3): 993–1004.
Bai J, Yang Y, Wang S, Gao L, Chen J, Ren Y, Ding W, Muhammad I, Li Y. Syringa iofil Lindl. Aqueous extract is a potential biofilms inhibitor in S. suis. Front Pharmacol. 2017; 8:26. doi: 10.3389/fphar.2017.00026.
Bonifait L, Grignon L, Grenier D. Fibrinogen induces biofilms formation by Streptococcus suis and enhances its antibiotic resistance. Appl Environ Microbiol. 2008; 74(15): 4969–4972.
Grenier D, Grignon L, Gottschalk M. Characterisation of biofilms formation by a Streptococcus suis meningitis isolate. Vet J. 2009; 179(2): 292–295.
Tanabe S, Bonifait L, Fittipaldi N, Grignon L, Gottschalk M, Grenier D. Pleiotropic effects of polysaccharide capsule loss on selected biological properties of Streptococcus suis. Can J Vet Res. 2010; 74(1): 65–70.
Wang Y, Zhang W, Wu Z, Lu C. Reduced virulence is an important characteristic of biofilms infection of Streptococcus suis. FEMS Microbiol Lett. 2011; 316(1): 36–43.
Meng X, Shi Y, Ji W, Meng X, Zhang J, Wang H, Lu C, Sun J, Yan Y. Application of a bacteriophage lysin to disrupt biofilms formed by the animal pathogen Streptococcus suis. Appl Environ Microbiol. 2011; 77(23): 8272–8279.
Wang S, Wang C, Gao L, Cai H, Zhou Y, Yang Y, Xu C, Ding W, Chen J, Muhammad I, Chen X, He X, Liu D, Li Y. Rutin inhibits Streptococcus suis biofilms formation by affecting CPS biosynthesis. Front. Pharmacol. 2017; 8:379. doi: 10.3389/fphar.2017.00379.
Ding WY, Li YH, Lian H, Ai XY, Zhao YL, Yang YB, Han Q, Liu X, Chen XY, He Z. Sub-minimum inhibitory concentrations of rhubarb water extracts inhibit Streptococcus suis biofilm formation. Front Pharmacol. 2017; 8:425. doi: 10.3389/fphar.2017.00425.
Wang Y, Yi L, Zhang Z, Fan H, Cheng X, Lu C. Biofilm formation, host-cell adherence, and virulence genes regulation of Streptococcus suis in response to autoinducer-2 signaling. Curr Microbiol. 2014; 68(5): 575–580.
Wang Y, Yi L, Wang S, Fan H, Ding C, Mao X, Lu C. Crystal structure and identification of two key amino acids involved in AI-2 production and biofilm formation in Streptococcus suis LuxS. PLoS One. 2015; 10(10): e0138826. doi: 10.1371/journal.pone.0138826.
Ma F, Yi L, Yu N, Wang G, Ma Z, Lin H, Fan H. Streptococcus suis serotype 2 biofilms inhibit the formation of neutrophil extracellular traps. Front Cell Infect Microbiol. 2017; 7: 86. doi: 10.3389/fcimb.2017.00086.
Segura M. Streptococcus suis vaccines: candidate antigens and progress. Expert Rev Vaccines. 2015; 14(12): 1587–1608.
Jiang X, Yang Y, Zhu L, Gu Y, Shen H, Shan Y, Li X, Wu J, Fang W. Live Streptococcus suis type 5 strain XS045 provides cross-protection against infection by strains of types 2 and 9. Vaccine. 2016; 34(51): 6529–6538.
Wang J, Feng Y, Wang C, Zheng F, Hassan B, Zhi L, Li W, Yao Y, He E, Jiang S, Tang J. Genome-wide analysis of a avirulent and reveal the strain induces protective immunity against challenge with virulent Streptococcus suis Serotype 2. BMC Microbiol. 2017; 17(1): 67. doi: 10.1186/s12866-017-0971-0.
Journals System - logo
Scroll to top