RESEARCH PAPER
First report of Bartonella sp. isolated from Hippobosca equina L. (Hippoboscidae: Hippobosca) in Lublin Province, south-eastern Poland
More details
Hide details
1
Department of Animal Ethology and Wildlife Management, University of Life Sciences, Lublin, Poland
2
Faculty of Medical Sciences in Zabrze, Department of Medical and Molecular Biology, Medical University of Silesia, Katowice, Poland
3
Department of Biology and Parasitology, Faculty of Health Sciences, Medical University, Lublin, Poland
4
Department of Zoology and Genetics, Faculty of Biology, University of Bialystok, Poland
Corresponding author
Weronika Maślanko
Department of Animal Ethology and Wildlife Management, University of Life Sciences in Lublin, Akademicka 13 St.,, 20-950, Lublin, Poland
Ann Agric Environ Med. 2024;31(3):334-339
KEYWORDS
TOPICS
ABSTRACT
Introduction and objective:
Hippobosca equina (Diptera: Hippoboscidae), is a widespread blood-feeding ectoparasite associated with the forest ecosystem. The insect is characterized by a wide host range and low host specificity, which increases the risk of feeding on animals that constitute a reservoir of transmissible pathogens, including Bartonella spp.
Material and methods:
Hippobosca equina adults were collected from humans and companion animals within a continental mesotrophic oak-pine mixed forest in eastern Poland. DNA was isolated by the ammonia method, and isolates obtained from single individuals were tested by PCR method for the presence of 5 vector-borne pathogens. In case of the positive results, the amplicons were sequenced and examined by a BLAST search.
Results:
The PCR analysis of DNA isolates obtained from 100 H. equina specimens revealed the presence of the RNA polymerase beta-subunit gene (rpoB) of the genus Bartonella, in 1% of the studied insects, i.e. one H. equina female. The rpoB gene haplotype of Bartonella sp. reported in this study, was identical to a Bartonella sp. sequence obtained from deer keds in Lithuania, and very closely related to strains with zoonotic potential. None of the H. equina specimens studied was positive for the presence of B. burgdorferi s.l., Anaplasma phagocytophilum, Babesia spp., and Coxiella burnetii.
Conclusions:
The study indicates the need to screen the occurrence of Bartonella spp., both in potential vectors and reservoirs of this pathogen in various habitats.
ACKNOWLEDGEMENTS
The authors express their thanks to the National Veterinary
Institute-National Research Institute in Puławy, eastern
Poland, for providing the DNA isolate of Coxiella burnetii,
and to Ewelina Szwaj PhD for assistance in the identification
of specimens, and to Joanna Witecka PhD for assistance in
the molecular analyses.
REFERENCES (54)
1.
Álvarez-Fernández A, Breitschwerdt EB, Solano-Gallego L. Bartonella infections in cats and dogs including zoonotic aspects. Parasit Vectors. 2018;11(1):624. doi:10.1186/s13071-018-3152-6.
2.
Angelakis E, Raoult D. Pathogenicity and treatment of Bartonella infections. Int J Antimicrob Agents. 2014;44(1):16–25. doi:10.1016/j.ijantimicag.2014.04.006.
3.
Shtaya AA, Perek S, Kibari A, Cohen S. Bartonella henselae Endocarditis: An Usual Presentation of an Unusual Disease. Eur J Case Rep Intern Med. 2019;6(3):001038. doi:10.12890/2019_001038.
4.
Mabra D, Yeh S, Shantha JG. Ocular manifestations of bartonellosis. Curr Opin Ophthalmol. 2018;29(6):582–587. doi:10.1097/ICU.0000000000000522.
5.
Kalogeropoulos D, Asproudis I, Stefaniotou M, et al. Bartonella henselae- and quintana-associated uveitis: a case series and approach of a potentially severe disease with a broad spectrum of ocular manifestations. Int Ophthalmol. 2019;39(11):2505–2515. doi:10.1007/s10792-019-01096-7.
6.
Lins KA, Drummond MR, Velho PENF. Cutaneous manifestations of bartonellosis. An Bras Dermatol. 2019;94(5):594–602. doi:10.1016/j.abd.2019.09.024.
7.
Breitschwerdt EB, Bradley JM, Maggi RG, Lashnits E, Reicherter P. Bartonella Associated Cutaneous Lesions (BACL) in People with Neuropsychiatric Symptoms. Pathogens. 2020;9(12):1023. doi:10.3390/pathogens9121023.
8.
Goodman B, Whitley-Williams P. Bartonella. Pediatr Rev. 2020;41(8):434–436. doi:10.1542/pir.2019-0198.
9.
Hammoud KA, Hinthorn DR, Edwards BS, et al. Bartonellosis (Bartonella Infection) Clinical Presentation. Updated 2022.03.09
https://emedicine.medscape.com... (access: 2023.12. 29).
10.
Kassab I, Isada C, Azar MM, et al. Into the unknown: Diagnosing mysterious brain lesions. Transpl Infect Dis. 2022;24(4):e13829. doi:10.1111/tid.13829.
11.
Helleberg M. Bacillary angiomatosis in a solid organ transplant recipient. IDCases. 2019;18:e00649. doi:10.1016/j.idcr.2019.e00649.
12.
Tomassone L, Berriatua E, De Sousa R, et al. Neglected vector-borne zoonoses in Europe: Into the wild. Vet Parasitol. 2018;251:17–26. doi:10.1016/j.vetpar.2017.12.018.
13.
Zouari S, Khrouf F, M’ghirbi Y, Bouattour A. First molecular detection and characterization of zoonotic Bartonella species in fleas infesting domestic animals in Tunisia. Parasit Vectors. 2017;10(1):436. doi:10.1186/s13071-017-2372-5.
14.
Müller A, Reiter M, Schötta AM, Stockinger H, Stanek G. Detection of Bartonella spp. in Ixodes ricinus ticks and Bartonella seroprevalence in human populations. Ticks Tick Borne Dis. 2016;7(5):763–767. doi:10.1016/j.ttbdis.2016.03.009.
15.
Silaghi C, Pfeffer M, Kiefer D, Kiefer M, Obiegala A. Bartonella, Rodents, Fleas and Ticks: a Molecular Field Study on Host-Vector-Pathogen Associations in Saxony, Eastern Germany. Microb Ecol. 2016;72(4):965–974. doi:10.1007/s00248-016-0787-8.
16.
Breitschwerdt EB. Bartonellosis: one health perspectives for an emerging infectious disease. ILAR J. 2014;55(1):46–58. doi:10.1093/ilar/ilu015.
17.
Soliman SM, Attia MM, Al-Harbi MS, Saad AM, El-Saadony MT, Salem HM. Low host specificity of Hippobosca equina infestation in different domestic animals and pigeon. Saudi J Biol Sci. 2022;29(4):2112–2120. doi:10.1016/j.sjbs.2021.11.050.
18.
Maślanko W, Szwaj E, Gazda M, Bartosik K. Hippobosca equina L. (Hippoboscidae: Hippobosca)-An Old Enemy as an Emerging Threat in the Palearctic Zone. Int J Environ Res Public Health. 2022;19(24):16978. doi:10.3390/ijerph192416978. PMID: 36554859.
19.
de Bruin A, van Leeuwen AD, Jahfari S, et al. Vertical transmission of Bartonella schoenbuchensis in Lipoptena cervi. Parasit Vectors. 2015;8:176. doi:10.1186/s13071-015-0764-y.
20.
Buczek W, Buczek AM, Bartosik K, Buczek A. Comparison of Skin Lesions Caused by Ixodes ricinus Ticks and Lipoptena cervi Deer Keds Infesting Humans in the Natural Environment. Int J Environ Res Public Health. 2020;17(9):3316. doi:10.3390/ijerph17093316.
21.
Maślanko W, Bartosik K, Raszewska-Famielec M, Szwaj E, Asman M. Exposure of Humans to Attacks by Deer Keds and Consequences of Their Bites-A Case Report with Environmental Background. Insects. 2020;11(12):859. doi:10.3390/insects11120859.
22.
Plan Urządzenia Lasu dla Nadleśnictwa Puławy. Sporządzony na okres od 1 stycznia 2018 r. do 31 grudnia 2027 r. na podstawie stanu lasu w dniu 1 stycznia 2018 r. Regionalna Dyrekcja Lasów Państwowych w Lublinie, Biuro Urządzania Lasu i Geodezji Leśnej. Oddział w Lublinie: 1–404.
23.
Matuszkiewicz W, Sikorski P, Szwed W, Wierzba M. Plant communities in Poland. Forests and thickets., Scientific Publishing House PWN SA, 2022.
26.
Oboňa J, Fogašová K, Fulín M, et al. Updated taxonomic keys for European Hippoboscidae (Diptera), and expansion in Central Europe of the bird louse fly Ornithomyacomosa (Austen, 1930) with the first record from Slovakia. Zookeys. 2022;1115:81–101. doi:10.3897/zookeys.1115.80146.
27.
Guy EC, Stanek G. Detection of Borrelia burgdorferi in patients with Lyme disease by the polymerase chain reaction. J Clin Pathol. 1991;44(7):610–611. doi:10.1136/jcp.44.7.610.
28.
Skotarczak B, Wodecka B. Use of polymerase chain reaction (PCR) for detection of tick Borrelia burgdorferi sensu lato in screening studies. Folia Med Cracov. 2000;41(3–4):35–42 (in Polish).
29.
Wójcik-Fatla A, Szymańska J, Wdowiak L, Buczek A, Dutkiewicz J. Coincidence of three pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti) in Ixodes ricinus ticks in the Lublin macroregion. Ann Agric Environ Med. 2009;16(1):151–158.
30.
Blaschitz M, Narodoslavsky-Gföller M, Kanzler M, Stanek G, Walochnik J. Babesia species occurring in Austrian Ixodes ricinus ticks. Appl Environ Microbiol. 2008;74(15):4841–4846. doi:10.1128/AEM.00035-08.
31.
Renesto P, Gouvernet J, Drancourt M, Roux V, Raoult D. Use of rpoB gene analysis for detection and identification of Bartonella species. J Clin Microbiol. 2001;39(2):430–437. doi:10.1128/JCM.39.2.430-437.2001.
32.
Zhang GQ, Nguyen SV, To H, et al. Clinical evaluation of a new PCR assay for detection of Coxiella burnetii in human serum samples. J Clin Microbiol. 1998;36(1):77–80. doi:10.1128/JCM.36.1.77-80.1998.
33.
Hall T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999;41:95–98.
34.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731–2739. doi:10.1093/molbev/msr121.
35.
Posada D. jModelTest: phylogenetic model averaging. Mol Biol Evol. 2008;25(7):1253–1256. doi:10.1093/molbev/msn083.
36.
Schröter S, Freick M, Vogt I, Jentzsch M. Lausfliegen (Hippoboscidae: Diptera) als Vektoren für Bakterien mit Zoonosepotential bei Säugetieren. Beiträge Jagd Wildforschung. 2020;45:193–198.
37.
Boucheikhchoukh M, Mechouk N, Benakhla A, Raoult D, Parola P. Molecular evidence of bacteria in Melophagus ovinus sheep keds and Hippobosca equina forest flies collected from sheep and horses in northeastern Algeria. Comp Immunol Microbiol Infect Dis. 2019;65:103–109. doi:10.1016/j.cimid.2019.05.010.
38.
Halos L, Jamal T, Maillard R, et al. Role of Hippoboscidae flies as potential vectors of Bartonella spp. infecting wild and domestic ruminants. Appl Environ Microbiol. 2004;70(10):6302–6305. doi:10.1128/AEM.70.10.6302-6305.2004.
39.
Pena-Espinoza M, Em D, Shahi-Barogh B, et al. Molecular pathogen screening of louse flies (Diptera: Hippoboscidae) from domestic and wild ruminants in Austria. Parasit Vectors. 2023;16(1):179. doi:10.1186/s13071-023-05810-4.
40.
Rudolf I, Blažejová H, Mendel J, et al. Bartonella species in medically important mosquitoes, Central Europe. Parasitol Res. 2020;119(8):2713–2717. doi:10.1007/s00436-020-06732-1.
41.
Szewczyk T, Werszko J, Steiner-Bogdaszewska Ż, Jeżewski W, Laskowski Z, Karbowiak G. Molecular detection of Bartonella spp. in deer ked (Lipoptena cervi) in Poland. Parasit Vectors. 2017;10(1):487. doi:10.1186/s13071-017-2413-0.
42.
Reeves WK, Nelder MP, Cobb KD, Dasch GA. Bartonella spp. in deer keds, Lipoptena mazamae (Diptera: Hippoboscidae), from Georgia and South Carolina, USA. J Wildl Dis. 2006;42(2):391–396. doi:10.7589/0090-3558-42.2.391.
43.
Jurke A, Bannert N, Brehm K, et al. Serological survey of Bartonella spp., Borrelia burgdorferi, Brucella spp., Coxiella burnetii, Francisella tularensis, Leptospira spp., Echinococcus, Hanta-, TBE- and XMR-virus infection in employees of two forestry enterprises in North Rhine-Westphalia, Germany, 2011–2013. Int J Med Microbiol. 2015;305(7):652–662. doi:10.1016/j.ijmm.2015.08.015.
44.
Shaheen MNF. The concept of one health applied to the problem of zoonotic diseases. Rev Med Virol. 2022;32(4):e2326. doi:10.1002/rmv.2326.
45.
Halabi SF. Adaptation of Animal and Human Health Surveillance Systems for Vector-Borne Diseases Accompanying Climate Change. J Law Med Ethics. 2020;48(4):694–704. doi:10.1177/1073110520979375.
46.
Regier Y, O Rourke F, Kempf VA. Bartonella spp. – a chance to establish One Health concepts in veterinary and human medicine. Parasit Vectors. 2016;9(1):261. doi:10.1186/s13071-016-1546-x [correction in Parasit Vectors. 2016;9(1):330].
47.
Marciano O, Gutiérrez R, Morick D, et al. Detection of Bartonella spp. in wild carnivores, hyraxes, hedgehog and rodents from Israel. Parasitology. 2016;143(10):1232–1242. doi:10.1017/S0031182016000603.
48.
Aleksandravičiene A, Paulauskas A, Stanko M, Fričová J, Radzijevskaja J. New Records of Bartonella spp. and Rickettsia spp. in Lice Collected from Small Rodents. Vector Borne Zoonotic Dis. 2021;21(5):342–350. doi:10.1089/vbz.2020.2722.
49.
Kejíková R, McKee C, Straková P, Šikutová S, Mendel J, Rudolf I. First detection of Bartonella spp. in bat bugs Cimex pipistrelli (Hemiptera: Cimicidae), Central Europe. Parasitol Res. 2022;121(11):3341–3345. doi:10.1007/s00436-022-07668-4.
50.
Werszko J, Świsłocka M, Witecka J, et al. The New Haplotypes of Bartonella spp. and Borrelia burgdorferi Sensu Lato Identified in Lipoptena spp. (Diptera: Hippoboscidae) Collected in the Areas of North-Eastern Poland. Pathogens. 2022;11(10):1111. Published 2022 Sep 28. doi:10.3390/pathogens11101111.
51.
Sitarz M, Buczek A, Buczek W. Skin Lesions and Systemic Reactions in Humans Infested by Blackflies (Diptera: Simullidae) in Recreational Areas in Southeastern Poland. J Clin Med. 2021;10(4):788. doi:10.3390/jcm10040788.
52.
Sokół R, Gałęcki R. Prevalence of keds on city dogs in central Poland. Med Vet Entomol. 2017;31(1):114–116. doi:10.1111/mve.12209.
53.
Sitarz M, Buczek AM, Buczek W, Buczek A, Bartosik K. Risk of Attacks by Blackflies (Diptera: Simuliidae) and Occurrence of Severe Skin Symptoms in Bitten Patients along the Eastern Border of the European Union. Int J Environ Res Public Health. 2022;19(13):7610. doi:10.3390/ijerph19137610.
54.
Vujanović L, Jovanović M, Golušin Z, Gajinov Z, Jakovljević S. Cutaneous manifestations caused by Simulium erythrocephalum bites in humans—A case series. Med Pregl. 2020;73:59–62. doi:10.2298/MPNS2002059V.