Efficacy of a novel biofilter in hatchery sanitation: II. Removal of odorogenous pollutants
More details
Hide details
Department of Animal Hygiene and Environment, Faculty of Biology and Animal Breeding, University of Agriculture in Lublin, Lublin, Poland
Department of Occupational Biohazards, Institute of Agricultural Medicine, Lublin, Poland
Corresponding author
Leszek Tymczyna   

Department of Animal Hygiene and Environment, Faculty of Biology and Animal Breeding, University of Agriculture in Lublin, Akademicka 13, 20-950 Lublin, Poland.
Ann Agric Environ Med. 2007;14(1):151-157
The present research assessed the treatment efficiency of odorogenous pollutants in air from a hatchery hall vented on organic and organic-mineral beds of an enclosed-container biofilter. In this study, the following media were used: organic medium containing compost and peat (OM); organic-mineral medium containing mbentonite, compost and peat (BM); organic-mineral medium containing halloysite, compost and peat (HM). The concentration of odorogenous gaseous pollutants (sulfur compounds and amines) in the hatching room air and in the air after biotreatment were determined by gas chromatography. In the hatchery hall among the typical odorogenous pollutants, there were determined 2 amines: 2-butanamine and 2-pentanamine, hydrogen sulfide, sulfur dioxide, carbon disulfide, sulfides and mercaptans. Ethyl mercaptan showed the highest levels as its mean concentration in the hatchery hall air exceeded 60 μg/m3 and in single samples even 800 μg/m3. A mean concentration of 2-butanamine and sulfur dioxide in the examined air also appeared to be relatively high – 21.405 μg/m3 and 15.279 μg/m3, respectively. In each filter material, the air treatment process ran in a different mode. As the comparison reveals, the mean reduction of odorogenous contaminants recorded in mthe hall and subjected to biotreatment was satisfying as it surpassed 60% for most established pollutants. These high removal values were confirmed statistically only for single compounds. However, a low removal level was reported for hydrogen sulfide and sulfur dioxide. No reduction was recorded in the bentonite supplemented medium (BM) for sulfur dioxide and methyl mercaptan. In the organic medium (OM) no concentration fall wasn noted for dipropyl sulfide either. In all the media investigated, the highestn mremoval rate (100%), not confirmed statistically, was observed for carbon disulfide. Very good results were obtained in the medium with a bentonite additive (BM) for both identified amines, whose mean elimination rate exceeded 60% (p≤0.05). The present research proved that diethyl sulfide is most susceptible to biofiltration (over 80%) in the bed supplemented with halloysite (HM) and bentonite (BM) (p≤0.05).
Auria R, Aycaguer AC, Devinng JS: Infl uence of water content on degradation rates for ethanol in biofi ltration. J Air Waste Manage Assoc 1998, 48, 65-70.
Bohn HL: Odor removal by biofi ltration. In: Gnyp DR, Gnyp A (Eds): Recent Developments and Current Practices in Odor Regulations, Control and Technology. Trans Air Waste Mgmt Assn, 135-147, Derezno 1991.
Bohn HL: Biofi lter media. In: 89th Annual Meeting & Exhibition Air & Waste Management Assoc 96-WP87A.01, Nashville, Tennessee 1996.
Chmielowiec-Korzeniowska A, Tymczyna L, Drabik A, Malec H: Biofi ltration of volatile organic compounds in the hatchery. Ann Anim Sci 2005, 5(2), 371-378.
Chmielowiec-Korzeniowska A, Tymczyna L, Skórska Cz, Sitkowska J, Cholewa G, Dutkiewicz J: Effi cacy of a novel biofi lter in hatchery sanitation: I. Removal of airborne bacteria, dust and endotoxin. Ann Agric Environ Med 2006, 14, 141-150.
Clark RC, Wronowski A: Biofi lters for sewer pump stationvents: infl uence of matix formulations on the capacity and effi ciency of odorant removal by an experimental biofi lter. In: Dragt V, van Ham J (Eds): Biotechniques for Air Pollution Abatement and Odour Control Policies, 183-186. Amsterdam, The Netherlands 1992.
Classen JJ, Young JS, Bottcher RW, Westerman PW: Design and analysis of a pilot scale biofi ltration system for odorous air. Am Soc Agr Eng 2000, 43(1), 111-118.
Deshusses MA: Biological waste air treatment in biofi lters. Environ Biotech 1997, 8, 335-339.
Edwards FG, Nirmalakhandan N: Biological treatment of airstreams contaminated with VOCs: An overview. Wat Sci Tech 1996, 34, 565-571.
Kennes Ch, Thalasso F: Waste gas biotreatment technology. J Chem Technol Biotechnol 1998, 72, 303-319.
Kołacz R, Dobrzański Z, Kulok M, Korniewicz D, Pogoda-Sewerniak K: Wpływ dodatku haloizytu do paszy na poziom wybranych parametrów hematologicznych i biochemicznych krwi tuczników. Zesz Nauk AR Wrocław 2004, 350, 102-119.
Pearson CD: The determination of the trace mercaptans and sulfi des in natural gas chromatography – Flame photometric detector technique. J Chrom Sci 1976, 14, 154-158.
Ramírez-López E, Corona-Hernández J, Dendooven L, Rangel P, Thalasso F: Characterization of fi ve agricultural by products as potential biofi lter carriers. Bioresource Technol 2003, 88, 259-263.
Rappert S, Müller R: Odor compounds in waste gas emissions from agricultural operations and food industries. Waste Manage 2005, 25, 887-907.
Rozporządzenie Ministra Środowiska z dnia 5 grudnia 2002 roku w sprawie wartości odniesienia dla niektórych substancji w powietrzu. Dz.U. z dnia 8 stycznia 2003 r., Warszawa 2003.
Rozporządzenie Rady Ministrów z dnia 20 grudnia 2005 roku w sprawie opłat za korzystanie ze środowiska. Dz.U. z dnia 29 grudnia 2005 r., Warszawa 2005.
Rozporządzenie Ministra Pracy i Polityki Społecznej z dnia 29 listopada 2002 roku w sprawie najwyższych dopuszczalnych stężeń i natężeń czynników szkodliwych dla zdrowia w środowisku pracy. Warszawa 2002.
Journals System - logo
Scroll to top