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INTRODUCTION

Occupational or accidental exposure to high doses of 
pesticides can result in life-threatening poisoning [2]. Para-
quat (1,1’-dimethyl-4,4’-bipyridinium) (PQ) is a fast-act-
ing non-selective contact herbicide, and is extremely toxic 
to humans and animals by all routes of exposure [6].

As a redox-cycling compound, PQ exerts its toxicity 
through increased production of free radicals [28, 31, 33]. 
Target organs affected during PQ poisoning are the lung 
and the kidney. The neurotoxic effects of PQ are relatively 
unknown [3].

When in the divalent cationic form, PQ2+ (which is ex-
tremely electrophylic), it undergoes one electron reduction 
to a mono-cationic radical (PQ•+) by the cytosolic enzymes 
NADPH oxidase and nitric oxide (NO) synthase (NOS), 
and via the mitochondrial complex I [3, 6, 10]. The limiting 

factor for this reaction is the available amount of NADPH 
(the major source of electrons) [28, 31]. PQ•+ can react with 
molecular oxygen to form the superoxide anion radical 
(O2

•ˉ) which contributes to oxidative cell damage [33].
There is substantial evidence indicating elevated oxida-

tive stress during PQ poisoning including increased lipid 
peroxidation (LPO), diminished energy metabolism and 
decreased cytochrome oxidase activity [21]. Dopaminer-
gic neurons may be preferentially targeted by PQ because 
of their signifi cant vulnerability to reactive oxygen species 
(ROS)-mediated oxidative injury [3]. Compared to other 
neuronal cells, dopaminergic cells are much more sensitive 
to oxidative injury [6, 9, 18]. The cell bodies of dopami-
nergic neurons, located within the substantia nigra (SN), 
send projections that terminate and release dopamine in 
the striatum (two essential brain regions for maintaining 
normal motor function). The loss of SN neurons results in 
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reduced synthesis and release of dopamine from striatal 
nerve terminals [14].

In addition, stimulation of the N-methyl-d-aspartate 
(NMDA) form of glutamate receptors followed by Ca2+ 
cell infl ux and NMDA receptor-dependent production of 
NO by NOS seems to play a role in PQ neurotoxicity [6, 
21, 26, 27]. PQ stimulates glutamate effl ux initiating ex-
citotoxicity mediated by reactive nitrogen species (RNS) 
[6, 26, 27].

NG-nitro-L-arginine methyl ester (L-NAME), a competi-
tive non-specifi c inhibitor of NOS, has been found to re-
strain the development of oxidative and nitrosative stress 
in neuronal cells by reducing NO synthesis [29]. Nitrate 
(NO3ˉ) is the major fi nal metabolic product of NO and oth-
er RNS [8, 25, 33].

In order to reveal the role of NO in PQ-mediated neu-
rotoxicity, we tested a hypothesis that L-NAME pre-treat-
ment could possibly distinguish the effects of ROS on oxi-
dative stress from those of RNS. Furthermore, we sought to 
determine whether L-NAME exerted a protective effect.

EXPERIMENTAL

Animals. Adult male Wistar rats weighing approxi-
mately 220 g were used for the experiment. The rats were 
housed in separate cages with free access to food and wa-
ter. For adaptation purposes the rats were kept for 7 days at 
room temperature prior to the experiment with a of light/
dark cycle of 13/11 hours. Treatment and care of animals 
was humane according to the Guidelines for Animal Study 
number 282-12/2002. The whole study was approved by 
the Ethics Committee of the Military Medical Academy, 
Belgrade, Serbia.

Experimental design. After adaptation, the rats were 
randomly assigned to 5 groups. One group of 8 was used as 
the control (untreated animals) and sacrifi ced at time zero. 
The rats in the other groups were intraperitoneally anesthe-
tised with sodium pentobarbital (45 mg/kg body weight) 
before intrastriatal (i.s.) administration of the following: 
control group (n = 8) treated with 10 μL of 0.9% NaCl so-
lution; PQ group (n = 24) – animals were poisoned with PQ 
with one single dose (2.5 μg/10 μL); L-NAME + PQ group 
(n = 24) – animals were pre-treated with L-NAME with 
one single dose (10 μg/10 μL) 30 minutes before PQ ad-
ministration and L-NAME group (n = 24) – animals were 
treated with L-NAME with one single dose (10 μg/10 μL). 
The rats in all the groups were sacrifi ced by decapitation 
at 30 min, 24 hours and 7 days (8 animals at each time 
point), heads were immediately frozen in liquid nitrogen 
and stored frozen at -70ºC until analysis. The administra-
tion of PQ, L-NAME and NaCl required the use of a Ham-
ilton syringe, accurately coordinated by using a stereotaxic 
instrument for small laboratory animals (coordinates: 8.4 
mm behind the bregma, 2.6 mm left from the midline su-
ture and 4.8mm ventral from the dura) [24].

Reagents. All chemicals were of analytical grade or bet-
ter. Paraquat - Galokson® (200 g/L) was purchased from 
Galenika (Zemun, Serbia); Sodium pentobarbital – Veta-
narcol® (0.162 g/mL) was purchased from Werfft-Chemie 
(Vienna, Austria); NaCl solution (0.9% w/v) was provided 
by the Hospital Pharmacy (Military Medical Academy, 
Belgrade). L-NAME was purchased from Sigma (Mu-
nich, Germany) and NaNO3 from Mallinckrodt Chemical 
Works (St. Louis, MO, USA). Sodium gluconate, EDTA, 
Na2HPO4, KH2PO4, glycerol, methanol and acetonitrile 
were purchased from Merck (Darmstadt, Germany). Sodi-
um tetraborate and boric acid were purchased from Zorka 
(Sabac, Serbia). Deionised water was prepared by the Mil-
lipore milli-Q water purifi cation system (Waters-Millipore, 
Milford, MA, USA).

The tissue preparation. Homogenates of rat striatum 
were prepared according to Guard et al. method [12].  
In brief, the brain was removed before extraction of the 
striatum, ipsi- and contra- lateral side from incompletely 
defrosted brain tissue at all times kept on ice. Slices of 
striatum were transferred separately into cold buffered 
sucrose (0.25 mol/l sucrose containing 0.1 mmol/l EDTA 
in potassium-sodium phosphate buffer, pH=7). An aliquot 
(1 ml) was placed into a glass tube homogeniser (Tehnica 
Zelezniki Manufacturing, Slovenia) and homogenisation 
was performed twice with a tefl on pestle at 800 rpm (1,000 
× g) for 15 min at 4°C. The supernatant was centrifuged at 
2,500 × g for 30 min at 4°C. The resulting precipitate was 
recovered and dissolved in 1.5 ml of deionised water. Solu-
bilisation of subcellular membranes in hypotonic solution 
was performed by constant mixing using a pasteur pipette 
for 1 h. Thereafter, homogenates were centrifuged at 2,000 
× g for 15 min at 4°C and the resulting supernatant was 
stored at –70°C until analysis [12].

The concentration of total protein in the striatum homog-
enates was estimated according to the method of Lowry et 
al. (1951) with bovine serum albumin as a standard [19].

NO3ˉ determination. Firstly, deproteinisation of brain 
homogenates was performed using acetonitrile (sample:
acetonitrile, 2:1, v/v). After centrifugation, the supernatant 
was fi ltered through a membrane (0.45 μm) prior to chro-
matographic analysis (ion-exchange HPLC, as described 
by Curcic Jovanovic et al. [5]. In brief, a mobile phase 
[pH = 8.5 composed of borate buffer/gluconate concen-
trate, methanol, acetonitrile and de-ionised water in a ra-
tio 2:12:12:74 (v/v/v/v)] was used for isocratic elution at a 
fl ow rate of 1.3 ml/min at room temperature. Spectroscopic 
detection was performed at a single wavelength of 214 nm. 
For NO3ˉ determination 50 μL of fi ltrate was injected into 
the HPLC system.

MDA determination. MDA (an indicator of the level of 
LPO) was determined by following the method described 
by Villacara et al. 1989 [32]. The method is based on the 
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reaction between thiobarbituric acid (TBA) and MDA 
which produces a yellow colour that absorbs at 533 nm.

O2
•ˉ determination. Its presence was quantitated by fol-

lowing a method based on the reduction of nitrobluetet-
razolium (NBT) to monoformazan by O2

•ˉ. The yellow 
colour of the reduced product was measured spectrophoto-
metrically at 550 nm. The results were expressed as nmol 
of reduced NBT/mg protein [1].

Statistical analysis. Data are expressed as means ± SD. 
Statistical analysis was performed using one-way analysis 
of variance (ANOVA) followed by the Fishers LSD mul-
tiple range test when appropriate. Values of p<0.05 were 
considered signifi cant. Spearman’s correlation analysis was 
performed for the relationships between all the measured 
parameters. All statistical calculations were performed us-
ing Statistica version 5.0.

RESULTS

The results of the measured parameters are presented 
graphically for the ipsilateral and in tabular form for the 
contralateral side of the striatum.

NO3ˉ. A signifi cant decline in the concentration of NO3ˉ 
was observed after 24 hours in both the ipsilateral and con-

tralateral side of striatum isolated from rats poisoned with 
PQ. In the L-NAME + PQ group, NO3ˉ in the striatum was 
lower than in controls and gradually decreased with time 
until an almost negligible level was present after 7 days 
(Fig. 1, Tab. 1).

O2
•ˉ radical. A signifi cant reduction in the level of O2

•ˉ 
radical was observed after 24 hours of PQ poisoning. In the 
L-NAME+PQ group a signifi cantly elevated concentration 

Table 1. Concentrations of measured parameters in contralateral striatum of Wistar rats.

Time Parameter Groups

Control PQ L-NAME+PQ L-NAME

30 min NO3ˉ 16.14 ± 6.73a, b 19.72 ± 9.45d, b 9.68 ± 2.82a, c 28.46 ± 13.13d

O2
• ̄ 2.44 ± 0.54a 3.86 ± 0.87a 5.44 ± 1.44b* 3.66 ± 0.83a

MDA 59.00 ± 20.66a 103.40 ± 25.59b* 96.71 ± 19.11b* 108.98 ± 9.72b*

24 h NO3ˉ 17.92 ± 5.77a 3.50 ± 2.22b* 5.08 ± 2.04b* 40.80 ± 20.91c

O2
• ̄  2.91 ± 0.91c 1.06 ± 0.45a* 5.25 ± 1.39b* 2.81 ± 0.77c

MDA 68.02 ± 14.80a, d 55.73 ± 13.04a 76.99 ± 17.40b, d* 110.82 ± 23.9c*

7 days NO3ˉ 14.29 ± 3.66a 12.60 ± 4.71a 3.09 ± 1.59a* 16.91 ± 5.21a

O2
• ̄ 3.54 ± 0.83a 4.24 ± 1.75a 3.20 ± 1.65a 3.64 ± 0.64a

MDA 63.76 ± 8.94a, c 95.17 ± 12.62b* 86.58 ± 23.53b, c*  74.05 ± 19.11b, c

Control group (n = 8) – treated with 10 μL of 0.9% NaCl solution; PQ group (n = 24) – poisoned with one single dose of PQ (2.5 μg/10 μL); L-NAME 
+ PQ group (n = 24) – pre-treated with L-NAME with one single dose (10 μg/10 μL) 30 minutes before PQ administration and L-NAME group (n = 
24) – treated with L-NAME with one single dose (10 μg/10 μL). NO3ˉ are expressed as nmol/mg protein; O2•ˉ as mmol red. NBT/mg protein and MDA 
as pmol/mg protein. Values are means ± SD (n = 8). Means not sharing the same letter are signifi cantly different (p < 0.05, for the same time point). 
*Statistically different from control group (zero time); p-values were obtained by one-way ANOVA followed by Fisher’s test.
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Figure 1. NO3
- content in ipsilateral striatum of rats after single intrastriatal 

administration of PQ, L-NAME and L-NAME + PQ.
Values are means ± SD (n = 8). Means not sharing the same letter are 
signifi cantly different (p<0.05, for the same time point). *Statistically 
different from control group (zero time); p-values were obtained by one-
way ANOVA followed by Fisher’s test.

Table 2. Spearman’s correlation coeffi cients between NO3ˉ and O2
• ̄ , and NO3ˉ and MDA for each time point within the experiment.

 rs-values

ipsilateral striatum contralateral striatum

0 30 min 24 h 7 d 0 30 min 24 h 7 d

NO3ˉ and O2
• ̄  -0.26 -0.08 +0.88 -0.10 +0.44 -0.70 +0.40 -0.80

NO3ˉ and MDA -0.25 -0.31 +0.65 +0.10 -0.61 -0.60 -0.80 +0.40
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of O2
•ˉ was found within the fi rst 24 hours. The difference 

between the concentrations of O2
•ˉ obtained in PQ and L-

NAME+PQ groups was signifi cant at the 24 hours time 
point (Fig. 2, Tab. 1).

LPO. After PQ administration MDA levels were signifi -
cantly elevated at 30 min and 7 days. However, in the L-
NAME + PQ group the MDA level was elevated only at 30 
min. In the latter group, the MDA values declined and after 
7 days were close to control values (Fig. 3, Tab. 1). 

Correlation between NO3ˉ and O2
•ˉ, and NO3ˉ and 

MDA. At all time points the NO3ˉ concentration was posi-
tively correlated with that of O2

•ˉ concentration in brain 
striatum after PQ intoxication, with observed statistical 
signifi cance (rs=+0.44, p=0.0098) (Fig. 4).

At all time points the NO3ˉ concentration was positively 
correlated with that of MDA with observed statistical sig-
nifi cance (rs=+0.52, p=0.0016) (Fig. 5, Tab. 2).

DISCUSSION

Our results confi rm the neurotoxic effects of PQ, based on 
observed increases in both O2

•ˉ production and LPO. LPO 
results in a progressive loss of membrane fl uidity, reduces 
membrane potential and increases the permeability to ions 
such as Ca2+ [21]. Decreased levels of NO3ˉ found after PQ 
poisoning suggest NO depletion via a PQ redox-cycling 
metabolism, probably via reaction with O2

•ˉ, whereby the 
harmful peroxynitrite (ONOO•ˉ) anion is generated. Pre-
treatment with L-NAME provided the possibility to distin-
guish the effects of ROS from RNS with respect to kinetic 
and spatial propagation of oxidative lipid injury induced by 
PQ. Almost identical results were found on both sides of 
the brain area. The consequences of NOS inhibition could 
be attributed to the down-regulation of NADPH oxidase 
[22, 23], decreased production of ONOO•ˉ and reduced ex-
citotoxicity of NMDA receptors, known in the literature 
as a feature of PQ-mediated neurotoxicity. Thus, our study 
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Figure 2. O2
•ˉ concentration in ipsilateral striatum of rats after single 

intrastriatal administration of PQ, L-NAME and L-NAME + PQ.
Values are means ± SD (n = 8). Means not sharing the same letter are 
signifi cantly different (p<0.05, for the same time point). *Statistically 
different from control group (zero time); p-values were obtained by one-
way ANOVA followed by Fisher’s test.
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confi rms NO involvement in PQ-mediated neurotoxicity 
involving harmful effects of RNS on LPO, as well as the 
protective effect offered by L-NAME in pre-treated rats.

L-NAME’s protective effect on PQ intoxication with re-
spect to NO synthesis was clear from our results (Fig. 1). 
Immediately after treatment, the NO3ˉ level was reduced 
two-fold compared to controls.

A most likely explanation is that endogenous NO, al-
ready present in rat striatum prior to NOS inhibition by 
L-NAME, promptly reacted with O2

•ˉ to form ONOO•ˉ. 
In addition, lower NO3ˉ concentrations in PQ-treated rats 
compared to controls point to the involvement of NO in 
PQ redox-cycling metabolism. Depletion of NO could be 
explained by ONOO•ˉ formation [8]. Shimizu et al. found 
elevated extracellular NO levels after PQ perfusion and 
almost negligible levels after 24 hours of PQ exposure, 
which is in accordance with our results. Perhaps reduced 
synthesis of ATP in mitochondria and energy depletion are 
explanations for such results [26, 27]. The anticipated inhi-
bition of NOS in rats treated only with L-NAME was not 
observed. Importantly, the highest inhibition of NOS was 
obtained in rats exposed to L-NAME + PQ, which implies 
synergistic or potentiating effects of these substances.

According to Muzaffar and co-workers, some NO do-
nors can inhibit NADPH oxidase [22, 23]. We speculate 
that inhibition of NO synthesis by L-NAME forced PQ 
redox cycling with a consequent elevation of ROS produc-
tion. Considerably higher LPO in PQ-treated rats immedi-
ately after administration and after 7 days emphasises the 
more harmful effects of RNS, compared to that observed 
in the L-NAME + PQ-treated rats, in which the effects of 
ROS were dominant. If ROS are less harmful to lipids than 
ONOO•ˉ we envisage that this could be the reason why 
MDA values were similar to controls in the L-NAME + PQ 
group after 24 hours and 7 days. These fi ndings support our 
hypothesis regarding the protective effect of L-NAME.

Signifi cantly elevated O2
•ˉ levels in the striatum of rats 

in the L-NAME + PQ group (within the fi rst 24 hours com-
pared to the PQ group) could be explained by elevated O2

•ˉ 
production (induced by PQ), inhibited NO synthesis and 
insuffi cient capacity of superoxide dismutase (SOD) [4]. 
A recent study from Edabi and Sharma demonstrated that 
ONOO•ˉ inhibited manganese SOD (Mn-SOD) contribut-
ing to elevated O2

•ˉ [6, 7]. ONOO•ˉ, a more aggressive oxi-
dant than O2

•ˉ, triggers LPO, which is in accordance with 
our observed results [33]. Therefore, increased MDA in 
rats poisoned with PQ might be ascribed to the deleterious 
effects of ONOOˉ rather than O2

•ˉ [8, 16, 17, 33]. The dual 
role of NO, both anti-oxidative and pro-oxidative, is cur-
rently a subject of scientifi c contention [13]. Despite this, 
we believe that both could contribute to LPO. Its pro-oxi-
dative role could be attributed to ONOO•ˉ [8, 16, 17, 33]. 
In contrast, its anti-oxidative role could be explained by 
the termination of LPO by the formation of nitrated lipid 
adducts, including RONO/RNO2 and ROONO/RONO2, or 
via the induction of various anti-oxidant defence enzymes 

[8, 25]. Positive correlation between NO3ˉ and MDA and 
between NO3ˉ and O2

•ˉ at all time points provides evidence 
that favours the involvement of NO in PQ-mediated toxic-
ity. It has been suggested that ONOO•ˉ formation is a pri-
mary pathway of NO metabolism which is related to the 
high rate of reaction between NO and O2

•ˉ [16, 17].
ONOO•ˉ can react with all classes of bio molecules (in-

cluding the hydroxylation of aromatic amino acids, nitra-
tion of tyrosine and oxidation of thiols and lipids) and can 
signifi cantly contribute to oxidative cell damage [8].

The mitochondrial respiratory chain is the major source 
of intracellular O2

•ˉ production under physiological condi-
tions (electron “leakage” during the process of O2 reduc-
tion to H2O). However, PQ metabolism via complex I sup-
presses O2

•ˉ production through the mitochondrial electron 
transport chain via NAD(P)H depletion. The signifi cant 
decrease in O2

•ˉ, NO3ˉ and MDA observed after 24 hours 
found in rats poisoned with PQ could therefore be explained 
by energy insuffi cient oxidatively damaged neurons.

Such a disorder of mitochondrial function involving 
mitochondrial depolarisation, Ca2+ deregulation and de-
pressed ATP synthesis can lead to apoptotic or necrotic cell 
death, and may produce early onset and rapid progression 
of neurological disorders [11]. Dopaminergic neurons are 
particularly vulnerable to complex I inhibition. In the study 
by Tawara and co-workers, complex I activity in rat brain 
decreased with time with a signifi cant effect observed 2 
hours after PQ administration, implying that PQ decreases 
mitochondrial complex I activity within the brain at an 
early stage after PQ exposure, even before respiratory dys-
function is observed [30].

Edabi and Sharma’s studies that focussed on Parkinson’s 
like pathophysiological mechanisms induced by PQ, re-
ported that ONOOˉ was an effective inhibitor of enzymes 
in the mitochondrial respiratory chain which resulted in 
decreased ATP synthesis due to signifi cantly lower activity 
of complex I [7, 30]. 

Behavioural changes induced by PQ emphasise the sus-
ceptibility of the nigrostriatal dopaminergic system to oxi-
dative damage [20]. Perhaps pre-treatment with L-NAME 
prevents development of extrapyramidal behaviour during 
PQ poisoning.

According to the report by Shimizu and colleagues, L-
NAME was able to suppress excitotoxicity [6, 15]. In our 
present study, we noticed behavioural changes in the group 
of rats that were administered PQ, characterised by rigour, 
tremor, diskinesia and rotational behaviour contralaterally 
from the lesion immediately after recovery from anaesthe-
sia. Rats treated with L-NAME did not exhibit any behav-
ioural changes. Behavioural studies focusing on the impact 
of xenobiotics on dopamine systems have only recently 
been documented [6].

Some authors have reported that PQ’s toxicity involves 
glutamate-induced activation of non-NMDA receptors re-
sulting in activation of NMDA receptor-channels. The in-
fl ux of Ca2+ into cells stimulates NOS. Released NO would 
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diffuse towards dopaminergic terminals and further induce 
mitochondrial dysfunction by the formation of ONOO•ˉ re-
sulting in continuous and long-lasting dopamine overfl ow 
[26, 27]. NO produced by NOS is thought to play an im-
portant role in excitotoxicity, probably through the forma-
tion of ONOO•ˉ.

CONCLUSION

Our study confi rms (i) the involvement of NO in PQ-me-
diated neurotoxicity, (ii) more harmful effects of nitrogen 
species than oxygen species on oxidative lipid deterioration 
and (iii) the protective effect of L-NAME if administered in 
a pre-treatment regime. The absence of behavioural chang-
es, characterised by rigour, tremor, diskinesia and rotational 
behaviour in the group pre-treated with L-NAME (in addi-
tion to the obtained experimental results) implies a protec-
tive role of L-NAME during PQ-mediated neurotoxicity.
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