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Abstract
Introduction. In this study we examined 200 faecal samples from pigs and calves with suspected cryptosporidiosis were 
examined by the PCR methods: nested PCR for amplification of SSU region; nested PCR for amplification of GP60 region; 
and with restriction analysis of DNA (PCR-RFLP). The sequencing identified the following species: Cryptosporidium muris 
(2), Cryptosporidium andersoni (1), Cryptosporidium bovis (4), Cryptosporidium suis (2), Cryptosporidium scrofarum (10), mixed 
infection caused by C. scrofarum and C. muris (1), and Cryptosporidium parvum (10) genotype A subtype IIaA17G2R1.�  
Results and conclusions. The findings suggest that livestock can be an important source of zoonotic species or genotypes 
of Cryptosporidium, which may adversely affect the public health of human populations. This is the first time in our country 
that the Cryptosporidium species has been identified in livestock in Slovakia. The identification and genotyping of this 
pathogen in Slovakia, completes the epidemiological situation in Europe for Cryptosporidum species.
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INTRODUCTION

The diarrheal syndrome is a common and economically 
significant disease of livestock. In breeding conditions 
with low hygienic standards, this syndrome is known to 
cause high morbidity and mortality. Cryptosporidium spp. 
are one of several possible etiologicalagents that may be 
responsible for significant neonatal morbidity [1]. The main 
reservoir of pathogenic Cryptosporidium spp. is among 
livestock, especially calves, lambs, kids and weaners. Cases 
of Cryptosporidium infection have been reported in Slovakia 
only rarely. Therefore, information about the occurrence of 
individual Cryptosporidiumspecies and the prevalence of 
cryptosporidiosis is sparse.

Cryptosporidium infections in weaners and pigs are mostly 
asymptomatic or rarely exhibit overt clinical symptoms. 
Cryptosporidiosis in pigs is usually caused by three different 
intestinal species of Cryptosporidium: Cryptosporidium 
parvum, Cryptosporidium suis, and Cryptosporidium 
scrofarum (Cryptosporidium pig genotype II), which has been 
described as ‘natural infections’ in pigs and may be caused 
by Cryptosporidium specific for other hosts. The gastric 
Cryptosporidiummurishas been detected in pig manure 
collected from Irish farms [2]. In eastern China, a C. parvum 
mouse genotype was isolated from porcine faeces [3], whose 
typical natural hosts are rodents [4]. Naturally occurring 
Cryptosporidium infection in pigs are most commonly found 
in weaners more than one month old, but younger than six 
months of age. Infections of piglets younger than one month 
and in adult pigs are described less frequently.

The course of Cryptosporidium infections in pigs is different 
from that in other livestock or in humans. Diarrhoea in 
pigs is usually a multifactorial problem and can be caused 
by a wide variety of pathogens (coccidia, Strongyloides sp., 
Salmonella spp., Clostridium perfringens, Escherichia coli, 
adenoviruses, rotaviruses, and circoviruses [5, 6, 7]), either 
separately or in combination with other opportunistic 
pathogens (Encephalitozoon intestinalis, Enterocytozoon 
bieneusi, and Cryptosporidium spp.). Experimental infections 
have demonstrated that pigs are susceptible to other gastric 
Cryptosporidium, i.e.C. meleagridis and C. hominis [8].

Unlike in pigs, the prevalence of cryptosporidiosis in calves 
ranges from 2.4% – 100% worldwide [9]. Cattle are mainly 
infected by four Cryptosporidium species: Cryptosporidium 
parvum, Cryptosporidium bovis, Cryptosporidium 
andersoni, and Cryptosporidium deer-like genotype [10]. 
The zoonotic potential has been confirmed in only one 
species, namely, C. parvum. Other species and genotypes 
of Cryptosporidium reported in cattle are; Cryptosporidium 
ubiquitum, Cryptosporidium xiaoi and Cryptosporidium 
muris. The latter has a wide host range which includes mice 
and other rodents, some ruminants, primates, dogs, cats, 
rabbits and humans [11]. There has also been described a 
mixed infection caused by C. bovis and C. ryanae and a new 
genotype in the yak (Bos grunniens; 12). Studies have shown 
that Cryptosporidium infections in cattle are not limited by 
age, but by species (genotype) of Cryptosporidium, which 
causes these protozoan infection.

Application of the PCR method and its modifications 
(PCR-RFLP) with the use of appropriate primers and 
restriction enzymes, significantly improved diagnostics, 
mainly in terms of detection, identification of species 
and subtyping of Cryptosporidium spp. [13], because this 
pathogen has zoonotic potencial. Cryptosporidiosis can have 
an effect on the public health of humans. Identified species 
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of Cryptosporidium completes the epidemiological situation 
in neighbouring countries and indicates the necessity for 
especially monitoring the zoonotic species.

MATERIALS AND METHOD

Study population – samples. Samples of faeces were collected 
from 100 pigs and 100 calves from two farms (Strážske, 
Zemplínska Teplica) in Eastern Slovakia in September 2013 
and 2014, and divided into groups according to age (Tab. 1). 
Faecal samples were collected only from animals with clinical 
signs (anorexia, diarrhoea, abdominal pain, and weight loss 
to cachexia) indicating suspected cryptosporidiosis.

Molecular analysis – DNA isolation. Genomic DNA was 
extracted from the 100 mg stool samples using the DNA-
Sorb-B Nucleic acid Extraction kit (AmpliSence), according to 
the manufacturer’s instructions. Before extraction, the stools 
we homogenized to disrupt the oocysts at 6,500 rpm for 90 
seconds, with the addition of 0.5-mm-glass beads, 1.0-mm-
zircon beads and 300  µl lysis solution in a homogenizer, 
Precellys 24 (Bertin Technologies, France). After purification, 
the DNA was stored at 20° C until use in the nested PCR.

Nested PCR, PCR-RFLP – Electrophoresis, Sequencing. 
For the nested PCR, a modified protocol [13, 14] was used 
with genus-specific primers Xiao F2/ Xiao R2 (819–825 
bp) and  VKSS F1/VKSS R2 (345–355 bp), and a protocol 
described by Leetz et al. [14] using the outer primers VKSS 
F1/VKSS R1 (658–662 bp) and the inner primers VKSS F2 /
VKSS R2 (245–250 bp) for amplification of the SSU region of 
the Cryptosporidium species DNA. Secondary PCR products 
were analyzed by electrophoresis in 1.5% agarose gel and 
visualized by UV light with a wavelength of 312 nm [15].

Positive samples were repeatedly analyzed by PCR-RFLP, 
where for restriction of the primary PCR product with 
the length of 819–825 bp (primers: Xiao F2/Xiao R2), two 

restriction enzymes were used: Ssp I (identification of species) 
and PshB I (Vsp I, identification of genotypes; Takara BIO 
INC., Japan) with an incubation at 37 °C/12 hours [13].The 
products of restriction were separated on 2% agarose gel 
and visualized after staining with RedGel dye by UV light.

For confirmation of the Cryptosporidium spp. after PCR-
RFLP and nested PCR (VKSS primers), all positive samples 
were sent for sequencing. The sequences were compared 
with known sequences with BLAST in the NCBI database.

Samples positive for Cryptosporidium parvum were 
analyzed once again with nested PCR with species-specific 
primers gp15 F1/ gp15 R1 (980–1,000 bp) and gp15 F2/ gp15 
F2/R2 (450 bp) which are used for amplification of the GP60 
region and for identification of the genotype and subtype ofC. 
parvum. The PCR products were again sent for sequencing 
and the sequences genotyped.

PCR reaction mix. The volumes of the PCR reaction mixtures 
in both cases were 50 µl, from which the DNA sample was 
5 µl. In these reactions, primers with a concentration of 0.2 
μM and 5 U Taq DNA polymerases (FIREPol) were used.

The PCRs were run in a thermocycler (XP Thermal Cycler 
Blocks) with an initial denaturation of 95 °C for 5 min., 
followed by 35 cycles of 95 °C for 1 min., 60/ 61/69 °C for 1 
min., and 72 °C for 2 min. A final elongation step of 72 °C for 
7 minutes was included to ensure the complete extension of 
the amplified products.

Annealing temperature for the used primers Xiao F2/Xiao 
R2–60 °C, VKSS F1/VKSS R2 and gp15 F1/gp 15 R1–61 °C, 
gp15 F2/ gp 15 R2–69 °C.

PCR products were directly sequenced in both directions. 
Sequences were aligned and completed using ChromasPro, 
Bioedit and Clustal X, and compared with known sequences 
in the National Centre for Biotechnology Information 
GenBank database. The sequences generated in the presented 
study have been deposited in the GenBank database under 
accession numbers (described in the Results). The sequences 

Table 1. Detected species of Cryptosporidium

group
Age/
category

n

Intestinal species Stomach species
Mixed 

infection

C. parvum C. bovis C. suis C. scrofarum C. muris C. andersoni
C. scrofarum,

C. muris

pig

Strážske 2013

piglets 5 2 2 1

weaners 4 2 2

sows 6 1 1

Zempl. Teplica 2013
piglets 7

weaners 27

Strážske 2014
piglets 5

weaners 12 1

Zempl. Teplica 2014
piglets 8

weaners 26 4

S pigs 100 2 10 2 1 1

calf

Strážske 2013 < 1 month 5 2

Zempl. Teplica 2013
< 1 month 10 7

> 1 month 10 1 2

Strážske 2014 < 1 month 9

Zempl. Teplica 2014 > 1 month 66 2

S calves 100 10 4

S animals 200 10 4 2 10 2 1 1
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identified as Cryptosporidium spp are used for phylogenetic 
analysis and phylogenetic tree formation. The sequences were 
controlled by the Geneious programme and modified in the 
Bioedit program programme. In the phylogenetic process 
and evaluation of the monitored sequence, the RAxML 
programme was used [16]. The resulting phylogenetic tree is 
shown using Figtree and edited in Adobe Illustrator CC, 2014.

RESULTS

In the faecal samples of animals with suspected clinical 
cryptosporidiosis, the presence of the following species were 
confirmed in pigs: C. andersoni (1; KP704554), C.  suis (2; 
KP704556), and C.  scrofarum(10; KP704557). By repeated 
analysis of nested PCR with primers VKSS, the species 
C. muris (KP704555) were also identified in two weaners, 
and a mixed infection with C.  scrofarum and C.  muris 
confirmed in one weaner. In calves, infections were found 
with the species C. bovis (4; KP704558) and C. parvum (10; 
KP704559) genotype A subtype IIaA17G2R1 (KP704560). 
Prevalence of cryptosporidiosis in calves was 15% and in 
pigs – 14%.

The analyzed samples of the reference sequence (NCBI 
GenBank), and the ‘outgroup’ group consisted of the sequence 
Eimerii spp. A phylogenetic tree was constructed and the 
phylogenetic analysis highlighted not only the affinities and 
evolutionary branching between sequences of different types 
of Cryptosporidium spp. analysed, but also within the same 
species. The sequences obtained for C. parvum lie on a branch 
with a reference sequence of C. parvum and C. bovis analyzed 
sequences lie along the tree to the reference sequence of 
C. bovis, as well as C. suis and C. scrofarum, indicating also 
the close familial relationships within the intestinal species of 
Cryptosporidium spp. analyzed sequences. The phylogenetic 
tree also shows the differences in the types of gastric and 
intestinal species of Cryptosporidium.

DISCUSSION

By restriction analysis RFLP it is possible to diagnose and 
identify Cryptosporidium spp. in various hosts in a relatively 
short time. With RFLP analysis, 4 species of Cryptosporidium 
were identified, with a prevalence of 15.0% in pigs. The 
prevalence of Cryptosporidium infections in pigs has been 
reported to be 30–34%, with various representations in 
all age categories. Cryptosporidium infections have been 
reported worldwide, mainly in pigs before and after weaning 
which were in the age category of 1.5–3 months [5, 17]. 
In older animals with a prevalence of infection of 5–12%, 
cryptosporidiosis, it has been found to be less common 
in the age category of 5.5–6 months [18]. The presence of 
Cryptosporidium in older pigs varies. Xiao et al. [19], Atwill 
et al. [20] amnd Maddox-Hyttel et al. [17] reported the total 
absence of disease in this age category. On the contrary, in 
2007–2008, Kváč et al. (unpublished results) detected in the 
Czech Republic a prevalence higher than 21%, and Quilez 
et al. [21] reported prevalences of 30–34% in 2–6 months 
old pigs.

The infection in pigs is primarily localized in the small 
and large intestines. Vítovec et  al. [22] identified in their 
study a similarity of gastric Cryptosporidium: C.  muris 
and C. andersoni,withC. suis, oocysts, which were localized in 
the glands of the lymphogranular complex in the submucosa 
of the colon and the rectum. C.  suis frequently becomes 
disseminated to other parts of the gastrointestinal tract. In 
addition to the gastrointestinal tract, Cryptosporidium of pigs 
can infect surrounding organs. C. muris has a wide host range 
that includes mainly mice and other rodents that are possible 
reservoir of Cryptosporidium infections and have zoonotic 
potential. C. muris has been identified in pig faeces in the 
Czech Republic [23], in China [3], in pig manure (USA; 2) 
and in swine waste lagoons and sprayed fields (USA; 24). In 
their study, Kváč et al. [25] indicated that infections caused 
by C. muris in pigs after weaning, is not active, and therefore 
this group is not susceptible to infection by this species, butC. 
suis and C. scrofarum are highly pathogenic for pigs and the 
presence of these species in pigs after weaning was also found 
in the presented study.The infection of piglets by C. muris and 
mixed infection with C. muris and C. scrofarum, may indicate 
an active cryptosporidiosis in this age group due to the lack 
of passive immunity which may cause a high susceptibility 
to the pathogens, including parasitic infections.

The important aspect of the current work is the detection 
ofC. muris, confirmed only with the pair of primers VKSS that 
detects C. muris and alsoC. parvum, C. hominis, C. andersoni, 
C. meleagridis, C. baileyi, C. serpentis and C. wrairi [14, 26]. 
Based on these results, it is suspected that the primer VKSS 
is probably more sensitive for small fragments of DNA and 
specific for C. muris in the PCR analysis.

The fact that C.  scrofarum was identified not only in 
weaners, but also in one sow, correlates with the results of 
studies by Kváč et al. [27] and Quilez et al. [21]. It is also 
important to pay attention to the fact that this specie was 
diagnosed in an immunocompromised human [28], which 
confirms the zoonotic potential of C. scrofarum. From an 
epidemiological point of view, it would therefore be desirable 
to monitor the occurrence of this species in the human 
population.

Other Cryptosporidium species with zoonotic potential 
in the presented study group of animals were identified 

Figure 1. Evolutionary relationships among C. muris, C. andersoni, C. suis, 
C.  scrofarum, C. parvum, C. bovis  inferred from a  partial fragment of the 18S 
rRNA gene
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in calves. The prevalence of Cryptosporidium infections in 
calves on the farms in this study was 14%. However, Santín 
et al. [29], Rieux et al. [30] detected 92–100% prevalence of 
Cryptosporidium infections in calves. The difference in the 
prevalence of individual Cryptosporidium species is closely 
linked not only to the geographic locality and the climatic 
conditions, but also with selection of the study group, the 
type of breeding and the diagnostic methods used. Numerous 
studies have reported infections caused by C. bovis (43.08%), 
C. parvum (36.92%), C. ryanae (7.69%) as the most common 
in calves younger than one month of age [30, 31, 32, 33], which 
was also shown by the presented study with a prevalence of 
infection by C. parvum of 35%. Kváč et al. [34], Fayer et al. 
[34], and Santín et  al. [32] described in their studies that 
80–90% of the calves under one month of age with clinical 
cryptosporidiosis were infected by C. parvum. In the current 
study, not only C. parvum were identified we identified, but 
also infections caused by C. bovis in both groups of calves.

The most widespread subtypes of Cryptosporidium parvum 
in Europe are IIaA18G2R1, which is common in calves in 
the surrounding countries of Hungary [36], Sweden [37] and 
France [30], or the subtype IIaA15G2R1 reported not only 
in the cattle, but also in humans in Portugal [38], Slovenia 
[39], Netherlands [40] and France [41, 42] which indicates a 
possible zoonotic potential.

Genotyping allowed identification of subtype IIaA17G2R1, 
detected only in calves in Europe, in Northern Ireland [43], 
Germany [44], Italy [45] and Spain [46], as well as in Canada 
[47] and the USA [48]. The infection caused by this subtype 
was confirmed in goats in China [49], in 22 calves, 2 pigs and 
47 humans in North Carolina, USA [50], and in humans in 
Australia with a prevalence as high as 47.6% [51].

The detection and identification of subtype C.  parvum 
IIaA17G2R1 indicates another possible zoonotic potential, 
and draws attention to calves that can be an important source 
of infection causing cryptosporidiosis which, in turn, can 
affect the public health of humans. The repeated detection 
the C. scrofarum species in pigs in Strážske and C. parvum 
species in calves in Zemplínska Teplica points to persistent 
infection on the arms in Slovakia.

This is the first time that the Cryptosporidiumin species has 
been identified in livestock in Slovakia, and the identification 
and genotyping of this pathogen in that country completes 
the epidemiological situation in Europe.
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