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INTRODUCTION

A plant constitutes a complex biological system in 
which some functional units (buds) undergo an annual, 
genetically-determined development cycle. The cycle 
comprises both vegetative and reproductive development; 
both forms involve a number of phenological phases char-
acterized by specifi c morphological and/or physiological 
changes. Traditionally, the study of plant phenology has re-
lied almost solely on recording the timing of morphologi-
cal changes; however, more recent research has shown that 
a deeper analysis of certain key phases (e.g. fl owering or 
fruit ripening) provides a reliable biological evaluation that 
can usefully be applied to various crops. The phenological 
phases involved in fl owering provide a macroscopic index 
of a key endogenous process infl uenced by external factors 
including soil, climate, and crop husbandry. 

Aerobiology is a multidisciplinary science studying the 
release, dispersal and deposition of airborne living organ-
isms; it deals with many different types of particles gener-
ated by natural or human activities, capable of producing 
biological effects [20]. Aerobiological analysis enables the 
detection of airborne pollen and spores, thus providing in-
formation on plant phenology, potential crop production, 
plant distribution and the health of some species, allowing 
certain phytopathological risks to be identifi ed. 

Airborne spore detection enables fungal diseases to be 
predicted and prevented; it provides valuable data which 
can be used to model the emission and deposition of phy-
topathogenic spores within crops, and to predict their trans-
port from one crop to another [28]. The objective recording 
of pathogen spore levels provides the basis for Integrated 
Pest Management (IPM), a crop-husbandry strategy de-
signed to overcome ecological problems (Fig. 1). IPM 
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is a sustainable method of managing pests by combining 
biological, cultural, physical and chemical tools in a way 
that minimizes economic, health and environmental risks. 
These new methods must be implemented in three stages: 
prevention, observation, and intervention. The main goal is 
to eliminate or signifi cantly reduce pesticide use while at 
the same time maintaining pest populations at acceptable 
levels. Recent studies using Aerobiology Modeling System 
(AMS) simulations in conjunction with meteorological in-
formation have provided the basis for communications and 
alerts from plant pathologists to farmers.

Another major application of aerobiological data in ag-
ricultural research is the forecasting of crop production on 
the basis of airborne pollen data. Pollination is only one 
of the many events taking place in the plant development 
cycle; however, it is extremely important for yield where 
seed is required. Although successful fertilization depends 
on a number of environmental and endogenous factors, 
including climate and plant nutritional status, a suffi cient 
quantity of pollen must reach the receptive stigma in order 
to enhance fertilization potential [28]. Moreover, in ane-
mophilous plants a larger number of pollen grains are re-
quired to ensure pollination. Even at a distance of hundreds 
of kilometers, pollen incidence may be suffi cient to effect 
at least some fertilization [22]. Long-distance pollen dis-
persal is of great importance for pollination and seed-set-
ting in isolated specimens, and also for the long-distance 
transport of genes [22]. Wind pollination involves an in-
discriminate, ineffi cient dispersal mechanism, and requires 
very large amounts of pollen in order to ensure proper pol-
lination in many crops [28]. If a stigmatic surface measures 
1 mm2, then 1 million pollen grains distributed evenly over 
an area of 1 m2 are required for reasonable success in fer-
tilizing a single ovule. The effi ciency of wind pollination 
may be expressed by the equation: n = N × a/A, where n = 
effective pollen, N = total output of pollen produced, a = 
stigmatic surface, A = total area of the surroundings [25].

 Pollen production, which is genetically and physiologi-
cally controlled, largely determines the pollination process 

[5, 37, 40, 42, 59, 69]. Therefore, since wind pollination 
is a less controlled process than insect pollination, anemo-
philous plants have a very high ovule/pollen grain ratio 
averaging 1/500,000 [69]. The resulting elevated airborne 
pollen counts provide the basis for aerobiological crop-
forecasting methods. Cour & Van Campo in 1980 were the 
fi rst to demonstrate the link between pollination levels in 
anemophilous species and subsequent yields [18]; since 
then, a number of authors have used airborne pollen data as 
a tool for forecasting grape, olive and cereal crops [7, 31, 
53]. Optimized production and reliable crop forecasting 
are essential for effi cient product marketing: armed with an 
advance estimate of potential yields, producers can adopt 
the necessary strategies to offset year-on-year variations, 
and can also make informed decisions on harvest planning, 
pricing, insurance, and stock management [39]. This is es-
pecially necessary in the context of common international 
agricultural policies such as that operated in the European 
Union, whose farmers must meet production quotas in or-
der to be eligible for subsidies. 

Over recent years, this application has been tested in 
non-crop forest species in order to account for variations 
in fruit production. Although this research is hindered by 
the absence of fruit production data of the sort available 
for agricultural crops, tentative results suggest that the con-
siderable year-on-year annual variation in fruit production 
by anemophilous forest species (especially trees) is due 
largely to differences in pollen production and dispersal [5, 
13, 35, 50]. 

PHENOLOGY

Phenology, a term derived from the Greek phaino mean-
ing “to show” or “to appear”, is the study of periodical 
biological events in the animal and plant kingdoms as 
infl uenced by the environment [67]. As soon as the fi rst 
farmers began to settle, plant seeds, observe crop growth 
and obtain annual harvests, they became aware of the 
link between plant development and changes in the en-
vironment. The earliest phenological research naturally 
focussed on agricultural crops, in view of the economic 
importance of weather-induced effects [6, 57, 58, 60, 68]. 
Airborne pollen monitoring provides an objective record 
of the various fl owering phenophases in wind-pollinated 
plants. Phenological analysis enables the complex correla-
tion between climate and fl oral productivity to be accurate-
ly charted in these species; plants are excellent indicators 
of climate change, since the onset of phenological events 
is closely governed by weather-related factors. As a result, 
plant phenology models are increasingly used for a wide 
range of purposes: predicting the impact of global warm-
ing on crops [31], improving primary productivity models 
[47, 49], forecasting airborne pollen counts [14, 33], and 
supporting foresters and farmers in management decisions 
such as the selection of reforestation sources in order to 
prevent frost damage [11, 36]. 
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In general, phenological models are better termed 
‘pheno-meteorological’ models, in that they use weather-
related parameters to predict phenological events. In fl oral 
phenology, air temperature is the variable most infl uencing 
the fl owering process [15]. Most of the variability in polli-
nation onset is accounted for by heat accumulation over the 
preceding weeks, expressed as ‘Growing-Degree-Days’ 
(GDDº), especially in tree species. GDDº models must 
be defi ned by the start date for heat accumulation and by 
the threshold temperature above which the plant responds. 
These parameters may vary depending on the species and 
the study area. Other major variables in phenological stud-
ies include photoperiod and water availability, especially 
in herbaceous species [33, 34]. 

Plant-phenology forecasting is becoming increasingly 
important in agriculture, since many crop practices – in-
cluding the application of chemical, biological and hormo-
nal treatments – must be carried out during specifi c phe-
nological phases. Moreover, the combined monitoring of 
plant phenology and airborne pathogenic spore counts has 
been found to enhance the success of IPM strategies. Fun-
gal spore germination occurs only under certain conditions 
and during specifi c phenological phases [3]. Planning of 
chemical and biological treatments can thus be improved 
by taking into account not only spore thresholds but also 
favourable phenological phases. 

Aerobiological monitoring also has ecological applica-
tions. Analysis of airborne pollen data can provide an indi-
cation of species distribution, and can be used to monitor 
weed invasion. Aerobiological data thus serve as bioindi-
cators of environmental change: in some areas of Central 
Europe, for example, the invasion of Ambrosia artemisi-
ifolia L. has been observed as a weed in summer crops. 
A. artemisiifolia, Artemisia spp. and other ruderal species 
are highly resistant to pollutants, and are seen as a sign 
of environmental decline; increased airborne pollen counts 
for these species, coupled with a decrease in tree-pollen 
counts, are thus indicative of the bio-deterioration of veg-
etation. 

AGRICULTURAL PRODUCTIVITY

Pollination is a key factor for crop yield. Although, theo-
retically, one pollen grain per ovule would be suffi cient for 
fertilization, in several wind-pollinated plants the average 
number of pollen grains reaching the stigma ranges from 
5 to 20 [66]. 

Seasonal pollen yields vary considerably and, though 
pollen output per plant, also varies widely between spe-
cies, most wind-pollinated species release relatively large 
amounts of pollen [69]. Pollen emission is the result of a 
long period of development, usually starting in late sum-
mer the previous year. The amount of pollen available for 
the following year is predetermined, since the cells desig-
nated to become pollen grains are already present. In ane-
mophilous tree species fl owering in early spring, such as 

Corylus and Betula, meiosis is observed in August or early 
September [26, 27]. Therefore, for winter-dormant trees 
the pollen yield depends on temperature and rainfall dur-
ing the previous months. The stored resources of any plant 
are strained when both pollen and seeds are produced in 
large quantities. In many trees, variations in fruit produc-
tion are due to the alternation of high-pollen-emission and 
low-pollen-emission years. 

Aerobiological data provide information not only re-
garding the timing and the trend of the phenophase, but 
also regarding its magnitude. Airborne pollen counts are 
an indicator of the amount of pollen actually produced by 
the plant. Numerous studies have reported a close link be-
tween the quantity and quality of emitted pollen and fruit 
production in wind-pollinated plants [10, 28]. Pollen data 
can provide information regarding the fi nal fruit harvest 
several months in advance. This application, fi rst devel-
oped in the 1970s in France by Cour [17], has been suc-
cessfully tested in both anemophilous crops and non-crop 
forest species [29, 30, 35]. Knowledge of the major bio-
logical and climate factors infl uencing the fi nal harvest is 
becoming increasingly necessary in order to obtain reliable 
crop estimates and thus ensure optimized, effective crop 
management. This knowledge is also of great value to pub-
lic agricultural institutions, for the planning of government 
subsidies [64]. Early and effective crop forecasting is prov-
ing essential in optimizing human and economic resources 
for harvesting, marketing strategies, and global commer-
cial distribution. This is of particular importance for crops 
such as olive or grapes in Europe, which are major targets 
of European Union (EU) agricultural policy [1]. EU regu-
lations establish production quotas, assign economic aid 
in cases of harvest loss due to weather-related disasters, 
encourage the planting or abandoning of certain crops, 
and establish channels of communication among produc-
ing countries to prevent market shortages and uncontrolled 
price rises in low-production years. Until now, the most 
widely-used forecasting methods have been based on plot 
censuses, in which the observation of a limited number of 
plots provided an agronomic inventory from which the to-
tal production of a region could be extrapolated [51, 62]. 
However, this forecasting method has certain drawbacks 
[7, 55]:

a) Plot yield estimates are often affected by observer 
subjectivity.

b) The method is costly because it requires numerous 
observation points.

c) The earliest estimates often show an excessive margin 
of error, which can be corrected only in the period close to 
harvesting.

As a result of these drawbacks, since the 1960s a num-
ber of authors have advocated forecasting methods based 
on the correlation between airborne pollen counts and fruit 
production in both cultivated and forest species [44, 63]. 

The widely-used method developed by Cour and Van 
Campo [18] has subsequently been applied to a range of 



4 García-Mozo H

crops, including olives, vines, cereals, citrus fruits and ha-
zelnuts [2, 19, 39, 52, 56]. 

The olive tree originated thousands of years ago in the 
eastern Mediterranean, and later spread westwards. The 
adult plant is estimated to have a million fl owers that are 
either unisexual or hermaphrodite and are arranged in 
bunches [2]. It is an amphiphilous species: primarily in-
sect-pollinated, but with secondary wind-pollination. The 
fruit is a drupe from which olive oil is obtained. A large 
amount of farmland is devoted to olive production in the 
Mediterranean area [8]. Because of these fl oral, palynolog-
ical and cultural characteristics, high airborne olive-pollen 
counts are recorded in many European Mediterranean 
regions. In southern Spain, Gónzalez-Minero et al. [39] 
monitored olive pollen counts using a Cour trap; analyz-
ing their data in conjunction with agricultural yields and 
meteorological observations, they developed a forecasting 
method based on simple and multiple regression. They de-
vised three sets of forecasting equations: for early July (the 
end of fl owering, and six months before fruit picking); for 
late November (immediately before picking); and for late 
January (once fruit picking was over). 

Airborne pollen data have been used to determine op-
timum harvest dates in vineyards in France, Spain and 
Portugal [16, 38, 46, 61]: these studies generally noted a 
trend towards earlier harvest dates. A correlation has also 
been detected between pollen counts and grape production, 
although the monitoring of fungal spores is essential in or-
der to evaluate the impact of phytopathological diseases. 
Regression equations therefore take into account the effect 
of post-fl owering growing conditions, and a minimum of 
3–4 years are required to build reliable models. Analysis 
of results obtained in France indicates a strong correlation 
between estimated and real vine crops, with a mean R coef-
fi cient of 0.90 [7].

This method has proved effective in other anemophilous 
woody crops such as the hazelnut (Corylus avellana L.), for 
which Riera-Mora [62] developed a forecasting equation 
capable of predicting fruit production up to 7-8 months 
prior to harvest. 

Over recent years, Hirst volumetric pollen traps [43] 
have proved to be an accurate tool for crop forecasting, 
especially for olives – to which most research has been de-
voted [29, 30, 32, 54]. Most equations combine olive-tree 
phenology, airborne pollen counts, weather data and fruit 
production data to yield accurate results. 

Using a Hirst trap, Muñoz et al. [53] evaluated the cor-
relation between Poaceae pollen counts and cereal yields 
in Central Spain. The chief fi ndings were a strong correla-
tion between June pollen counts and dry-land cereal yields 
(wheat, barley and triticale), and a lack of correlation be-
tween pollen counts and irrigated-crop yields (maize, rice 
and sorghum). A signifi cant correlation was recorded be-
tween mean overall pollen counts in May and June and 
mean cereal yields, although this is likely to refl ect the 
similar effect of environmental conditions on the wild fl ora 

producing most of the airborne pollen, and on cereal crops. 
Finally, attempts have been made to forecast fruit pro-

duction in non-crop tree species, and especially in woody 
species such as Quercus [13, 35], Taxus [5], and Betula 
[50], all of which are characterized by highly-variable fruit 
production. Various hypotheses have been put forward to 
account for the alternation between high and low produc-
tion, although the variables involved remain unknown. In 
evergreen species such as Quercus, the resource-matching 
and seed-dispersal hypotheses have been scientifi cally 
ruled out by Koening et al. [48]. Other studies generally 
support the ‘predator satiation’ and ‘wind pollination’ hy-
potheses [21, 48]; the results obtained applying the pollen-
count method support the ‘wind pollination’ hypothesis. 
Combined use of aerobiological, fi eld phenological and 
meteorological data could represent a major step forward 
in forest fruit production research. 

The pollen-count method, apart from its ability to pro-
vide advance estimates, has other advantages: deviations 
are lower than in the test-plot forecasting system; fewer 
collecting data points are needed; and it is more objective 
than other methods. However, the pollen-based forecasting 
method has certain limitations, due mainly to the lack of re-
search programmes and the diffi culty in calculating pollen-
transport distances. Lack of knowledge of post-fl owering 
factors is an additional major problem in Mediterranean 
areas. Improved defi nition of climate-related equations 
will help to overcome this diffi culty and realize the full po-
tential of this method. A further disadvantage is the need to 
establish the average distance over which pollen grains are 
transported in order to evaluate the fertilization potential 
in many plants. 

AEROBIOLOGY AND PLANT PATHOLOGY

Aerobiological data enable the distribution, ecology and 
concentration of fungal spores to be determined. Spores 
dispersed in the air can travel long distances. Airborne 
spore monitoring provides information on daily and hourly 
spore counts in a given crop. In 1946, Stakman and Chris-
tensen [65] were the fi rst researchers to apply aerobiologi-
cal methods to plant pathology. A number of authors have 
since sought to correlate the extent of disease at a given 
time with airborne spore counts at the same time or previ-
ously [45]. Airborne spore counts are a bioindicator of the 
phenological cycle of pathogens. In the case of grapevine 
leaf attack by botrytis blight, a signifi cant correlation was 
found between airborne conidia counts and lesions appear-
ing one week later [12]. In these cases, aerobiological data 
are more useful than weather data for detecting infections 
at an initial stage (inoculums), although the combined use 
of weather and spore-count data provides a valuable tool 
for the development of accurate, modern Integrated Pest 
Management (IPM) strategies. When the farmer knows the 
spore risk thresholds, spore counts can serve as a disease 
alert if weather conditions are favourable [9]. The weather 
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conditions favouring spore germination are usually humid-
ity and dew temperature. The strategy most widely adopted 
by winegrowers to reduce the impact of fungal disease is 
the systematic application of chemical fungicides, gener-
ally following preset calendars based on the phenological 
growth stages of the grapevine [9]. However, integrated 
control methods are associated with reduced application 
of chemical treatments, and with lower economic and 
ecological costs, e.g. 50–80% saving of chemical sprays 
in the fi ght against Phytophora infestans [9]. Reduction of 
chemical residues also leads to an improvement in wine 
quality; the value of wines produced under IPM conditions 
is thus greater [3, 4]. 

Recently, several authors have combined aerobiological, 
phenological and meteorological data to produce equations 
for forecasting spore concentrations; in some cases, these 
equations account for up to 40% of spore-count variability 
when the variables with the highest correlation coeffi cients 
are included as estimators [23].

Over the last few years, certain dry areas of the Mediter-
ranean area traditionally devoted to rain-fed farming have 
been switched to irrigation. This may prompt an increase 
in the incidence of pathogenic fungi, which are more easily 
dispersed by irrigation than by rain-splash; since humid en-
vironments increase the active discharge of spores, heavy 
rain and irrigation favour the presence of certain airborne 
spore types [24, 41].
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