

A combined Smartwatch-Electrocardiogramme approach for atrial fibrillation detection in rural practice

Kazuhiko Kotani¹

¹Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University, Japan

A – Research concept and design, B – Collection and/or assembly of data, C – Data analysis and interpretation, D – Writing the article, E – Critical revision of the article, F – Final approval of the article

Kazuhiko Kotani. A combined Smartwatch-Electrocardiogramme approach for atrial fibrillation detection in rural practice. Ann Agric Environ Med. doi:10.26444/aaem/217588

Atrial fibrillation (AF) is the most common type of arrhythmia, characterized by irregular ventricular responses due to chaotic electrical activity in the atria [1]. AF is relatively prevalent, observed in approximately 1–2% of the general adult population, especially the elderly [1]. It is known as a critical condition due to being a major cause of stroke and heart failure [2, 3]. Of note, the prevalence of AF is reported to be high at 2.05% among agricultural populations in rural mountainous areas [4]. However, residents of these areas are recognized to have less opportunity to receive full disease management because of restricted access to cardiac specialists, travel distance, insufficient testing opportunities, insufficient understanding of the disease, and inadequate self-management support [4–6]. There is a demand for a simple method to detect AF among such residents.

Detecting AF outside of medical facilities may be a solution. Smartwatches, which record a single-lead electrocardiogramme (ECG) in addition to detecting irregular pulse waves via photoplethysmography (PPG), are devices usable in daily life and could serve as a convenient tool for AF detection [7]. Separate from chronic AF, paroxysmal AF often is undetected during a brief 12-lead ECG testing, while smartwatches, capable of repeated, long-term monitoring, offer advantages. However, the diagnostic accuracy of smartwatches remains debated, with limited evidence available [8, 9]. Very recently, a systematic review and meta-analysis was published demonstrating that smartwatches possess comparatively high diagnostic accuracy for detecting AF [10], highlighting their potential value in rural practice.

The features of ECG in AF include the irregular R-R intervals (when atrioventricular conduction is present), absence of distinct P waves, and irregular atrial activities (also called fibrillation waves); a diagnosis thus requiring confirmation by ECG (12-lead, multi-lead, or single-lead) [11]. The guidelines state 'confirmation by ECG is recommended to establish the diagnosis of clinical AF, perform risk stratification, and initiate treatment' [12]. A precise diagnosis of AF requires 12-lead ECG or Holter monitoring, not PPG; smartwatches alone are insufficient [11, 12]. Therefore, the diagnosis of AF can be

established through the combination of a PPG-smartwatch for continuous rhythm monitoring and an ECG for diagnostic waveform confirmation [10–12].

Bearing the evidence [10] in mind, in rural areas one may assume the idea as a possible approach to AF management in that screening is performed using smartwatches, with the diagnosis confirmed through ECG testing at medical facilities. Subsequent advances in telemedicine [13] now enable remote medication dispensing and electronic prescribing. This constitutes a framework for improving totally medical access. It is presumed to reduce travel expenses associated with round trips to distant specialist hospitals, time losses including work absences, and waiting costs, potentially improving cost-effectiveness. In Poland, a 'mail-in Holter service' via a private platform has begun [14]. This could provide a pathway where patients suspected of AF based on smartwatch monitoring bypass long waiting lists at public hospitals and use such private services to proceed quickly to a confirmed diagnosis [14]. This approach might be applicable to rural practice on AF.

On the other hand, challenges remain. For instance, the diagnostic accuracy of smartwatches still needs to be investigated. Smartwatch uptake among the residents may be limited in rural areas. If the number of residents with suspected AF increases, there may be an increased demand for more detailed confirmatory examinations. In a cost-effectiveness study, the combination of data of smartwatch and patch-type Holter ECG yielded the most cost-effective results [15]. Accordingly, in rural areas, a diagnostic pathway that uses smartwatches as the entry point and minimizes the need for detailed examinations is considered to be reasonable. Furthermore, a shift in physicians' mindset may be of importance. A survey of physicians identified several barriers: while being aware of the clinical utility of smartwatches, their concerns included the time constraints (the burden of reviewing and interpreting large volumes of smartwatch records within office hours, and integrating them into electronic medical records), limitations in insurance reimbursement, and inappropriate perceptions about the accuracy of single-lead ECGs [16]. In other words, promoting changes in physicians' awareness, knowledge, and behaviour will likely be necessary for future widespread adoption.

Detecting AF via smartwatches, confirming the diagnosis with resting 12-lead ECG or Holter monitoring, and

✉ Address for correspondence: Kazuhiko Kotani, Division of Community and Family Medicine, Center for Community Medicine, Jichi Medical University, 3311-1 Yakushiji, 329-0498, Shimotsuke-City, Japan
E-mail: kazukotani@jichi.ac.jp

integrating information-communication and medication-delivery systems may be the expected stage for AF management in rural areas. Progress is awaited in this field.

REFERENCES

1. Iguchi Y, Kimura K, Aoki J, et al. Prevalence of atrial fibrillation in community-dwelling Japanese aged 40 years or older in Japan: analysis of 41,436 non-employee residents in Kurashiki-city. *Circ J*. 2008; 72(6): 909–913.
2. Galvain T, Hill R, Donegan S, et al. The management of anticoagulants in patients with atrial fibrillation and history of falls or risk of falls: protocol for a systematic review and meta-analysis. *Syst Rev*. 2022; 11(1): 63.
3. Bencivenga L, Komici K, Nocella P, et al. Atrial fibrillation in the elderly: a risk factor beyond stroke. *Ageing Res Rev*. 2020; 61: 101092.
4. Gavino AI, McLachlan CS. Review of screening studies for atrial fibrillation in rural populations of 11 countries. *Proc (Bayl Univ Med Cent)*. 2017; 30(3): 280–285.
5. Rush KL, Burton L, Van Der Merwe F, et al. Atrial fibrillation care in rural communities: a mixed methods study of physician and patient perspectives. *BMC Fam Pract*. 2019; 20(1): 144.
6. Mann HK, Streiff M, Schultz KC, et al. Rurality and Atrial Fibrillation: Patient Perceptions of Barriers and Facilitators to Care. *J Am Heart Assoc*. 2023; 12(21): e031152.
7. Perez MV, Mahaffey KW, Hedlin H, et al. Large-Scale Assessment of a Smartwatch to Identify Atrial Fibrillation. *N Engl J Med*. 2019; 381(20): 1909–1917.
8. Al-Kaisey AM, Koshy AN, Ha FJ, et al. Accuracy of wrist-worn heart rate monitors for rate control assessment in atrial fibrillation. *Int J Cardiol*. 2020; 300: 161–164.
9. Buda KG, Sengupta J. Smartwatches and Atrial Fibrillation: What Works and What Needs Improvement? (<https://www.acc.org/Latest-in-Cardiology/Articles/2024/05/29/16/56/Smartwatches-and-Atrial-Fibrillation#resources-for-article>) American College of Cardiology. May 29, 2024.
10. Barrera N, Solorzano M, Jimenez Y, et al. Accuracy of Smartwatches in the Detection of Atrial Fibrillation: A Systematic Review and Diagnostic Meta-Analysis. *JACC Adv*. 2025; 4(11 Pt 1): 102133.
11. Joglar JA, Chung MK, Armbruster AL, et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation. *Circulation*. 2024; 149(1): e1–e156.
12. Van Gelder IC, Rienstra M, Bunting KV, et al. 2024 ESC Guidelines for the management of atrial fibrillation. *Eur Heart J*. 2025; 46(41): 4349–4470.
13. Chu M, Zhang S, Gong J, et al. Telemedicine-based integrated management of atrial fibrillation in village clinics: a cluster randomized trial. *Nat Med*. 2025; 31(4): 1276–1285.
14. Holter HELP. Jak przebiega badanie? <https://holterhelp.pl/jak-przebiega-badanie/> (access: 2026.01.11).
15. Chen W, Khurshid S, Singer DE, et al. Cost-effectiveness of Screening for Atrial Fibrillation Using Wearable Devices. *JAMA Health Forum*. 2022; 3(8): e222419.
16. Shroff S, Draper E, Massoomi M, et al. Physician Attitudes on the Use of Smartwatch Cardiovascular Data in Patient Care. *JACC Adv*. 2025; 4(6 Pt 1): 101824.