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Abstract
Introduction and Objective. The COVID-19 pandemic accelerated development of multimodal artificial intelligence (AI) 
models that combine chest computed tomography (CT), chest X-ray (CXR) and clinical/laboratory data to support imaging-
based diagnosis, triage and prognostication. This review synthesizes reported performance, clinical utility and limitations. � 
Review Methods. PubMed, Scopus and Google Scholar (Jan 2020–Jun 2025) were searched and included peer-reviewed 
English studies applying machine learning or deep learning to CT and/or CXR with reported sample sizes and performance 
metrics (AUC, sensitivity, specificity, F1). Preprints, case reports and studies without sample sizes or performance metrics 
were excluded. �  
Brief description of the state of knowledge. Meta-analyses report high discriminative performance for severity prediction 
(pooled AUC ≈ 0.89) alongside a high prevalence of study bias. Selected studies reported top accuracies up to ≈98% and 
multimodal F1 scores up to 0.89. Recurring limitations were dataset heterogeneity, single-centre training and scarce external 
validation. Some reports found automated pipelines substantially faster than manual reads (e.g. ~2.7 s vs ~6.5 min), although 
workflow times vary by setting. �  
Summary. Multimodal integration of CT, CXR and clinical data with AI is promising for rapid, reproducible assessment 
of COVID-19 severity. Clinical translation requires standardized acquisition and reporting, rigorous multicentre external 
validation, transparent methods, and formal evaluation of clinical impact and fairness. 
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INTRODUCTION

Radiology, long allied with technological progress, has 
become a key field in which artificial intelligence (AI) can 
drive substantial change across multiple sectors, including 
healthcare. How exactly AI is affecting contemporary 
radiological practice, diagnostic efficiency, and the 
extent to which it can meet the challenges of real-world 
implementation, remains a central question. A representative 
example is a retrospective study assessing the performance 
of deep learning algorithms for the detection of pneumonia 
on chest radiographs. Neural network–based approaches 
achieved a high AUROC (0.923) and sensitivity of 95.4% [1], 
markedly exceeding conventional radiological interpretation 
in that series. Such technologies not only support diagnostic 
workflows but also shorten result turnaround times, which 
can be critical in emergency settings.

Moreover, AI is employed in lung cancer screening, where 
it shows substantial potential to improve nodule detection 

sensitivity, reduce false-positive rates and assist nodule 
classification; it also contributes to growth prediction and 
radiogenomic characterization of nodules [2]. AI tools are 
also increasingly appearing in pulmonary digital pathology, 
including multimodal data analysis, three-dimensional 
pathology and applications related to transplant rejection [3].

The COVID-19 pandemic, caused by SARS-CoV-2, 
represented one of the most serious global health challenges 
of the twenty-first century. Since late 2019, the disease has 
spread to more than 200 countries, causing millions of 
infections and a substantial number of deaths. Its sudden 
emergence and high transmissibility overwhelmed health 
systems and produced widespread organizational challenges 
– staff shortages, reduced access to routine services and delays 
in diagnosis and treatment for other conditions [4]. The topic 
of AI-augmented imaging and rapid diagnostic support 
therefore aligns with the stated interests of AAEM in applied 
clinical and public-health issues, including the health of rural 
communities, occupational and environmental determinants 
and accessibility of medical care – areas in which faster, 
more reproducible imaging interpretation and AI-driven 
decision support may directly affect patient outcomes and 
system resilience.
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One of the major challenges during the pandemic was 
accurate and timely diagnosis of COVID-19. Because of the 
disease’s rapid course, heterogeneous clinical manifestations 
and the limited availability of molecular tests, imaging 
methods gained importance for diagnosis and monitoring. 
Current viral detection methods, such as molecular 
diagnostics, can be time-consuming and have imperfect 
sensitivity, while chest radiography provides faster results 
but is less sensitive than computed tomography (CT) [5]. CT 
played an important role in COVID-19 diagnosis by offering 
high sensitivity for parenchymal lung changes and enabling 
rapid case identification. Given the concerns about radiation 
exposure, low-dose protocols and judicious use of CT were 
emphasized to allow safe monitoring of pulmonary changes, 
particularly in severe cases of the disease. Furthermore, 
the pandemic accelerated demand for faster and more 
precise diagnostic tools, stimulating the development of AI 
technologies to support patient assessment and therapeutic 
decision making. Appropriately designed AI algorithms have 
even enabled virtual screening and structural optimization of 
potential SARS-CoV-2 inhibitors, thereby accelerating early 
stages of therapeutic discovery [6]. Despite these advances, 
further research is still needed to validate AI algorithms for 
predicting severe COVID-19 courses through integrated 
analysis of CT, chest radiography, and laboratory parameters.

OBJECTIVE

The aim of the review is to provide a comprehensive overview 
of current evidence on the performance of integrated 
approaches that combine low-dose computed tomography 
(LDCT), chest radiography, and laboratory parameters to 
predict COVID-19 severity. Methodological features and 
reported diagnostic/prognostic accuracy are synthesized, and 
how multimodal integration may support clinical decision-
making and optimize patient management are discussed.

MATERIALS AND METHOD

PubMed, Scopus and Google Scholar from January 2020 – 
June 2025 were searched using the key words: ‘COVID-19’, 
‘SARS-CoV-2’, ‘artificial intelligence’, ‘deep learning’, 
‘chest X-ray’, ‘computed tomography’ and ‘prognosis’. Only 
peer-reviewed articles published in English that applied 
machine-learning algorithms – particularly deep learning – 
to computed tomography (CT) or chest radiography (CXR) 
for diagnosis, severity assessment, or prognosis of COVID-19 
were included. Excluded were preprints, case reports, studies 
using exclusively synthetic data, and articles that did not 
report sample size or performance metrics. Inclusion and 
exclusion criteria are summarized in Table 1.

STATE OF KNOWLEDGE

Review of diagnostic techniques used during COVID-19. 
A range of laboratory and imaging methods were used 
for COVID-19 diagnosis which these differ in availability, 
turnaround time and accuracy. Current SARS-CoV-2 
detection techniques can be grouped into five main diagnostic 
categories: chest radiography (CXR), computed tomography 

(often low-dose CT), analysis of cough sounds or respiratory 
patterns, RT-PCR, and antigen/antibody tests [7]. The RT-
PCR assay detecting viral RNA remains the diagnostic gold 
standard [8]. These categories are presented in Figure 1.

Specimens are typically collected from the nasopharynx, 
although combined oral and oropharyngeal swabs have 
been proposed as an alternative. Nasopharyngeal samples 
generally offer higher diagnostic sensitivity, but are less 
comfortable for patients and require trained personnel; oral 
and oropharyngeal swabs are technically simpler and less 
invasive but carry a higher risk of false-negative results. 
Both sampling approaches are susceptible to errors related 
to timing and technique [9]. Clinical reports indicate that 
RT-PCR results commonly reach healthcare facilities no 
earlier than the day after sampling, whereas CT or CXR 
interpreted by an AI algorithm can provide results within 
minutes to hours. This timing difference can meaningfully 
affect patient triage at admission and, in some instances, 
may expedite initiation of targeted therapy while awaiting 
confirmatory RT-PCR results. In one reported example, AI 
reduced the interval from CT acquisition to interpretation 
from several days to 1 – 2 hours; the computational step 
itself averaged approximately 3 minutes. The study also 
documented improved detection metrics: sensitivity reached 
91.6%, specificity – 99.7%, and the proportion of missed 
lesions fell from 44.8% – 2.6%. These results highlight the 
potential of AI-augmented CT to deliver rapid, reproducible 
and precise assessment of pulmonary involvement, thereby 
supporting clinical decision making and optimization of 
COVID-19 treatment [10].

Machine-learning (ML) models, and particularly deep-
learning (DL) architectures, have shown high performance in 
identifying COVID-19 from radiological images such as CXR 

Table 1. Inclusion and exclusion criteria for study selection

Inclusion Criteria Exclusion Criteria

–	 Peer-reviewed articles in English.
–	 Original studies applying machine 

learning or deep learning to the 
analysis of CXR or CT images for the 
purposes of diagnosis, prognosis, or 
severity assessment of COVID-19.

–	 Reported data on the number 
of patients/images as well as 
performance metrics (e.g., AUC, 
sensitivity, specificity).

–	 Preprints, conference abstracts, and 
working papers.

–	 Studies involving only synthetic data 
simulations, or models without real 
imaging data.

–	 Case reports, letters to the editor, 
and commentaries.

CXR – chest X-ray; CT – computed tomography; AUC – Area under the curve

Figure 1. Diagnostic techniques used in COVID-19.
RT-PCR – reverse transcription polymerase chain reaction; LDCT – low-dose 
computed tomography

AAEM Annals of Agricultural and Environmental MedicineONLINE FIRST

ONLINE FIRST

ONLINE FIRST

ONLINE FIRST



Ada Jankowska, Karolina Kołodziejczyk, Magdalena Chrościcka, Jakub Pelak, Piotr Piech, Grzegorz Staśkiewicz﻿﻿﻿. Rapid, Reproducible and Reliable – multimodal…

and CT, enabling discrimination from community-acquired 
pneumonia. Concurrently, abnormalities in haematologic 
and biochemical parameters have been demonstrated to 
correlate significantly with disease severity and COVID-
19-related mortality. On this basis, algorithms integrating 
imaging and laboratory data have been developed to predict 
disease course and optimize therapeutic management [11]. In 
summary, integrating CT, chest radiography and laboratory 
parameters achieves a favourable balance between diagnostic 
accuracy and timeliness, facilitating prompt and accurate 
identification of patients at elevated risk of intensive care 
admission or mortality.

Artificial Intelligence in COVID-19 diagnosis – analysis 
of CT images. AI systems – especially those employing 
deep-learning (DL) algorithms – show substantial potential 
to enhance COVID-19 diagnosis from chest computed 
tomography (CT). In clinical research, AI is used for 
quantitative CT analysis to improve objectivity, increase 
measurement reproducibility and minimize human-
factor variability [12]. Studies have shown that the use of 
AI tools enables radiologists to achieve higher diagnostic 
accuracy (90%), sensitivity (88%) and specificity (91%) when 
distinguishing COVID-19 from other pneumonias [5].

In one analyzed study, a dataset of 1,065 CT images was 
assembled, including pathogenetically-confirmed COVID-19 
and previously diagnosed typical viral pneumonia. A modified 
transfer-learning model was developed for classification 
and evaluated with both internal and external validation. 
Internal validation yielded an overall accuracy of 89.5%, 
with sensitivity 0.87 and specificity 0.88; external validation 
on an independent test set achieved overall accuracy 79.3%, 
sensitivity 0.67 and specificity 0.83. Notably, among 54 
COVID-19 cases in which the first 2 nucleic-acid amplification 
tests were negative, the algorithm classified 46 as positive, 
attaining 85.2% accuracy within this subgroup [13].

A meta-analysis further demonstrated the high 
effectiveness of AI in identifying COVID-19 from CT 
images versus images of healthy individuals, with pooled 
sensitivity of 0.90 (95% CI, 0.90–0.91), specificity of 0.90 
(95% CI, 0.90–0.91) and an AUC of 0.96 (95% CI, 0.91–0.98). 
Models reporting particularly strong performance included 
ResNet-50, ResNet-101, ensemble bagged tree (EBT), Tree-
Based Pipeline Optimization Tool (TPOT), Gaussian Naive 
Bayes (GNB), random forest (RF) and convolutional neural 
networks (CNNs) [14]. To effectively discriminate SARS-
CoV-2 infection from non-COVID conditions, 10 widely 
used CNN architectures are commonly employed: AlexNet, 
VGG-16, VGG-19, SqueezeNet, Xception, MobileNet-V2, 
ResNet-18, GoogleNet, ResNet-50 and ResNet-101 [Fig. 2].

In routine clinical practice based on CT images, all of 
the aforementioned models demonstrated high diagnostic 
effectiveness. The ResNet-101 network in particular achieved 
a very high area under the ROC curve (AUC = 0.994), with 
sensitivity of 100%, specificity of 99.02% and overall accuracy 
– 99.51% [15]. The application of machine-learning (ML) 
algorithms in predictive medicine markedly expands the 
ability to detect disease early, and to identify patient-level 
health risks. It also supports clinical decision-making and the 
planning of preventive measures. Effective implementation 
of such tools helps maintain patients’ physical and cognitive 
functioning and improves quality of life. From an economic 
perspective, the benefits of deploying ML tools in health 

prevention may outweigh the costs of treating advanced 
disease stages. Broad implementation of effective ML-based 
solutions can therefore contribute not only to better health 
outcomes, but also to greater financial stability of healthcare 
systems. Crucially, analysis of the cited cases indicates that 
the effectiveness of ML implementation depends strongly 
on the size and quality of available data, their systematic 
updating, and the representativeness of training sets [16].

In addition, an innovative classifier was developed which 
– despite omitting the initial lung-segmentation step and 
using a relatively small open-source dataset – achieved 
high diagnostic performance, with an AUC of 0.956 on an 
independent test set. The ML classifier’s performance was 
compared with the assessments of 2 experienced radiologists, 
revealing only minimal differences in diagnostic accuracy. 
Notably, unlike radiologists’ dichotomous decisions, the 
ML classifier generated continuous prediction outputs, 
which enabled selection of thresholds characterized by high 
sensitivity or high specificity in COVID-19 diagnosis [17].

Identification of anatomical structures in medical images is 
a key step in radiologic diagnosis. Owing to advances in deep 
learning and the growing availability of large medical-image 
datasets, automatic recognition of anatomic structures has 
become feasible, increasing the precision and efficiency of 
image analysis [18]. This yields another potential advantage 
of AI-based diagnostic methods by markedly reducing the 
time needed to analyze diagnostic findings. The authors 
emphasize that a key aspect of predicting COVID-19 severity 
is identifying imaging features that forecast subsequent 
disease evolution, particularly with respect to temporal 
changes. A deep-learning model was developed using multi-
objective differential evolution (MODE) in combination 
with a CNN to classify the presence of COVID-19 on chest 
CT images. The model outperformed other architectures – 

Figure 2. Widely adopted CNN architectures for accurately distinguishing SARS-
CoV-2 infections from respiratory diseases unrelated to COVID-19.
CNN – convolutional neural network
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such as ANN, ANFIS and conventional CNNs – in terms of 
accuracy, F-measure, sensitivity, specificity and the kappa 
coefficient, confirming its real-time usefulness in COVID-19 
diagnosis [19].

In another study, deep learning enabled segmentation of 
COVID-19 infection regions in the lungs on CT, providing 
the quantitative information needed to monitor disease 
progression and to analyze treatment-related changes. 
Preliminary 3-dimensional analyses confirm the effectiveness 
of CT in assessing COVID-19 severity, with lesions most 
commonly located in the lower lobes of the lungs [20]. The 
authors argue that automated CT assessment using AI 
algorithms can substantially support diagnostic decisions – 
particularly under conditions of emergency department and 
intensive care overload – by streamlining triage, resource 
management and disease monitoring [21].

Artificial Intelligence in COVID-19 diagnosis – analysis 
of chest X-ray images. Numerous studies have confirmed 
the high effectiveness of convolutional neural networks 
(CNNs) in detecting COVID-19 from chest radiographs. 
An Xception model achieved an accuracy of 97.97% on a 
dataset comprising 6,432 samples. Other architectures, such 
as lightweight convolutional neural networks (LWCNN), 
exceeded 98% accuracy in multi-class analyses across 
different datasets. These results indicate the strong utility of 
AI as a clinical decision-support tool for COVID-19 diagnosis 
in real-world settings [7].

Moreover, it has been emphasized that CNNs can 
effectively support automated COVID-19 detection and 
the extraction of salient features from chest X-ray images. 
VGG-19 and MobileNet-V2 achieved the highest accuracies, 
with MobileNet-V2 effectively distinguishing COVID-19 
from other types of pneumonia. The investigators also 
highlighted the benefits of transfer learning, reporting 
93.48% accuracy for multi-class classification and 98.75% 
for binary classification using VGG-19 [22].

Similarly, another research group developed a deep 
transfer-learning approach for automatic identification of 
COVID-19; the pre-trained ResNet-50 model achieved the 
highest accuracy among 5 evaluated models, depending on 
the dataset employed [23]. In a separate study, a ResNet-based 
architecture (COVIDResNet) reached 96.23% accuracy, 
underscoring the clinical promise of these methods [24]. 
The highest percentage accuracies of the models discussed 
are summarized in Table 2.

Furthermore, the COVID-Net model is characterized 
by a high positive predictive value (PPV) for identifying 
SARS-CoV-2 infection, reaching 98.9%, which indicates 
a very low rate of false-positive results. This performance 

surpasses classical solutions based on the VGG-19 (PPV 
= 90.5%) and ResNet-50 (PPV = 91.3%) architectures. An 
innovative deep-neural-network design developed with 
a human-in-the-loop strategy enabled effective tailoring 
of the model to the specifics of detecting COVID-19 from 
chest X-ray (CXR) images. This approach increases the 
diagnostic precision of clinical decision-support systems in 
the pandemic context [25].

In one study, a deep-learning model based on the 
SqueezeNet architecture with Bayesian optimization was 
developed to classify COVID-19 cases from CXR images. 
Using off-line data augmentation together with the Bayes-
SqueezeNet design yielded an efficient diagnostic model 
that outperformed the reference COVID-Net model. 
The system achieved 98.3% classification accuracy when 
distinguishing normal, pneumonia and COVID-19 classes, 
and 100% accuracy for unambiguous identification of 
COVID-19 among the remaining classes. In the context of 
the global health crisis caused by the COVID-19 pandemic, 
this model shows considerable potential as a component of 
tools for monitoring and early infection detection. Its relative 
implementation simplicity makes it an attractive candidate 
for clinical and system-level deployment. Taken together, 
these factors suggest that deploying deep-learning solutions 
can complement traditional laboratory methods and improve 
diagnostic-system efficiency under pandemic conditions [26].

Recent directions in research. In a study aimed at detecting 
SARS-CoV-2 infection from radiological images (CXR and 
CT), a deep-learning architecture named DarkCovidNet was 
employed. The model was trained on a dataset totaling 1,125 
images: 125 confirmed COVID-19 cases, 500 non-COVID-19 
pneumonia cases, and 500 images of healthy lungs. High 
classification performance was achieved – 98.08% accuracy 
for the binary task (COVID-19 vs no COVID-19) and 87.02% 
for the 3-class task (COVID-19, pneumonia, healthy). These 
results outperformed classification performance reported in 
other comparable studies in the literature [27].

In another prospective study including 300 patients, an 
AI-derived affected lung area index reached an AUC of 0.857 
(95% CI, 0.809–0.905), whereas the semi-quantitative Brixia 
score achieved an AUC of 0.863 (95% CI, 0.818–0.908); the 
difference was minimal [28]. The authors noted that AI can 
support diagnosis in resource-constrained settings, but 
emphasized the need for larger prospective studies.

Recent research has also highlighted that algorithms 
may learn so-called demographic shortcuts (e.g., predicting 
disease based on race or gender). An analysis of 6 global 
CXR datasets showed that fairness corrections applied 
within the training set may not be optimal on novel test 
sets; models with less encoded demographic information 
may better preserve fairness across populations [29]. In 
another study using MIMIC-CXR data, over-sampling 
and synthetic augmentation were evaluated as fairness-
improvement strategies; they reduced disparities between 
demographic groups by 74.7% and 10.6%, respectively, 
without a meaningful loss of AUC [30].

The most recent meta-analyses indicate that neural 
networks achieve the highest AUCs for predicting COVID-19 
severity (AUC ≈ 0.893, sensitivity ≈ 0.75, specificity ≈ 0.91), 
yet 88% of the analyzed studies exhibited a high risk of bias 
[31]. This underscores the need for external validation and 
sustained attention to data quality. Table 3 summarizes the key 

Table 2. Accuracy of CNN in detecting COVID-19 from chest X-ray images

Model Accuracy (%)

Xception 97.97

LWCNN >98

VGG19 98.75 (2-class)

MobileNet v2 97.40 (2-class)

ResNet50 99.70

COVIDResNet 96.23

CNN – Convolutional neural networks; LWCNN – lightweight convolutional neural network
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characteristics of the datasets, the model architectures, and 
the reported performance metrics across the analyzed studies.

In one of the analyzed studies, the authors employed 
the BIOCXRNET model, which integrates features from 
chest radiographs (CXR) with 25 biochemical and clinical 
parameters obtained from 930 patients. Using FPN-
based segmentation with DenseNet121 and CheXNet 
for classification, the model achieved an F1 score of 0.89 
and improved accuracy by 6 percentage points relative to 
unimodal models [34]. Another group developed a neural 
network that fused textual data (clinical interviews, radiology 
reports) with tabular laboratory results in 1,296 patients. The 
network achieved an AUC of 0.87 and an F1 score of 0.62 for 
predicting 30-day mortality, outperforming models based 
solely on tabular data [35].

AI vs. radiologists – image interpretation time comparison. 
Studies indicate that the average interpretation time for 
radiologists was 6.5 minutes, whereas analysis by the AI 
system took only 2.73 seconds. These findings indicate a 
substantial potential for AI solutions to increase radiologists’ 
efficiency and streamline diagnostic workflows. Notably, 
only in the cohort comprising cases with pneumonia or 
no pneumonia did the AI system perform slightly worse 
than human readers. In differentiating community-acquired 
pneumonia from COVID-19, 37.5% of cases (3/8) that were 
misclassified by the AI system were also misinterpreted 
by radiologists. This underscores the high complexity and 
diagnostic difficulty of these imaging cases, regardless of the 
analysis method used [36].

Limitations of the study. Despite encouraging results, 
several important limitations should be noted. CT images 
often originate from different scanners and acquisition 
protocols, which can lead to variability in image quality, 
contrast and noise. Differences in exposure, spatial resolution, 
reconstruction algorithms and device calibration introduce 
input heterogeneity and may affect AI performance. 
Standardization of acquisition protocols and development 
of harmonized repositories are necessary to ensure adequate 
prediction quality. In addition, variability in biochemical 
parameters may stem from the timing of sample collection, 
the dynamic nature of inflammatory responses and inter-

laboratory analytical methods. Implementing uniform 
laboratory procedures and standardized sampling time 
frames can improve the reliability of input data.

Another limitation is the heterogeneity of AI models 
themselves – their architectures, depth, training procedures, 
validation strategies and data-augmentation techniques 
differ, which limits comparability and the ability to draw 
definitive conclusions. A key challenge is the limited 
availability of large, balanced datasets. For example, the 
COVIDX-Net model was developed using only 50 chest 
radiographs, raising concerns about reliability [37]. Others 
attempted to improve classification on imbalanced datasets by 
proposing DeTraC, which achieved 93.1% accuracy; however, 
its effectiveness requires further validation [38]. To increase 
data availability, some groups used generative adversarial 
networks (GANs). A PGGAN-based approach reportedly 
improved classification accuracy to 99.2% by generating 
realistic radiographs [39]. Another team emphasized that 
CovidGAN is not an alternative to laboratory testing, but may 
contribute to more efficient and reliable radiology decision-
support systems [40]. Establishing unified guidelines for 
the design and evaluation of AI models could improve 
reproducibility and clinical utility. Further studies should 
focus on algorithm optimization and their integration with 
healthcare information systems to enable broader application 
of AI in COVID-19 diagnostics.

Moreover, most models were trained on data from a single 
region or individual hospitals, limiting generalizability. 
Recent meta-analyses indicate that 88% of studies exhibit 
a high risk of bias [31]. Additionally, studies show that 
algorithms can learn ‘demographic shortcuts’, leading 
to disparate performance across ethnic groups; fairness 
corrections may help in training data but not necessarily in 
external tests [30]. Accordingly, reporting fairness metrics 
(e.g., differences in FPR/FNR across groups) and employing 
methods that increase data diversity are recommended.

Finally, despite the continued status of RT-PCR as the 
standard diagnostic method for detecting SARS-CoV-2, its 
use involves notable limitations, including the absence of a 
fully standardized diagnostic protocol, strong dependence of 
test performance on disease phase, potential sampling errors, 
and relatively long turnaround times [41, 42].

CONCLUSIONS

This review synthesizes evidence on multimodal artificial 
intelligence (AI) that integrates chest computed tomography, 
chest radiography and laboratory/clinical data to augment 
imaging-based diagnosis, triage and prognostication in 
COVID-19. Across study designs, these tools consistently 
deliver rapid, objective and reproducible quantification; 
reduce reader-to-reader variability; and can shorten time-
to-result – capabilities that are particularly valuable during 
surges and in settings with limited specialist availability. 
When embedded in acute-care workflows, multimodal AI can 
inform ICU resource planning, help prioritize patients at risk 
of deterioration, and support timely therapeutic decisions.

Translating these advances into routine practice requires 
standardized image acquisition and reporting, robust data 
quality pipelines, rigorous multi-centre external validation, 
and seamless integration with clinical information systems. 
Equally important are model calibration and monitoring, 

Table 3. Comparative analysis of dataset properties, architectures, and 
model performance

Author Data
(No. of cases)

Architecture Key Results Citation

Wang et al., 
2021

259 patients
(1065 images)

Modified
Inception V3

Internal AUC: 0,93; 
External AUC: 0,81

[13]

Gielczyk et al., 
2022

6432 CXR 
(COVID-19, 
pneumonia, 
healthy)

Xception / 
ResNeXt / 
InceptionV3

Xception:
Accuracy 97,97%

[32]

Rahman et al., 
2023

930 patients 
(396 ‘low risk’, 
534 ‘high risk’)

BIOCXRNET 
(CXR + 25 
biomarkers)

F1 = 0,89 [34]

Verma et al., 
2024

2470 CXR
(470 COVID)

UNet + VGG16 
+ SVM

Accuracy 98% [33]

Dipaola et al., 
2023

1296 patients Multimodal 
ANN (text + 
tabular data)

AUC = 0,87; F1 = 0,62 
(30-day mortality 
prediction)

[35]

AUC – area under the curve; F1 – F1-score; CXR – chest X-ray; ANN – artificial neural networks
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safeguards for fairness across demographic subgroups, and 
transparent methods that support clinician understanding. AI 
systems should support, not replace, clinical judgment; patient-
level decisions must remain contextual and physician-led.

Future research should prioritize prospective, impact-
oriented studies; openly described benchmarks and reporting 
standards; richer multimodal fusion (imaging, laboratory 
data and clinical text); reproducible workflows; and 
continuous auditing of performance, bias and explainability 
in real-world use. Addressing these priorities will improve 
the reliability and accessibility of care while strengthening 
system resilience beyond the current disease context.
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