Effects of 2.4 GHz radiofrequency electromagnetic field (RF-EMF) on glioblastoma cells (U-118 MG)

1 University of Life Sciences, Poznań, Poland
2 ADR Technology, Poznań, Poland
3 Military University of Technology, Warsaw, Poland
4 Adam Mickiewicz University, Poznań, Poland

Abstract

Introduction. Mobile phones and Wi-Fi are the most commonly used forms of telecommunications. Initiated with the first generation, the mobile telephony is currently in its fifth generation without being screened extensively for any biological effects that it may have on humans or on animals. Some studies indicate that high frequency electromagnetic radiation emitted by mobile phone and Wi-Fi connection can have a negative effect upon human health, and can cause cancer, including brain tumour.

Objective. The aim of the study was to investigate the influence of 2.4 GHz radiofrequency electromagnetic field (RF-EMF) on the proliferation and morphology of normal (human embryonic kidney cell line Hek-293) and cancer cells (glioblastoma cell line U-118 MG).

Materials and method. The cell cultures were incubated in RF-EMF at the frequency of 2.4 GHz, with or without dielectric screen, for 24, 48 and 72h. In order to analyse the influence of the electromagnetic field on cell lines, Cytotoxicity test Cell Counting Kit-8 was performed. To protect cells against emission of the electromagnetic field, a dielectric screen was used.

Results. It was found that 2.4 GHz RF electromagnetic field exposure caused a significant decrease in viability of U-118 MG and Hek-293 cells. The impact of the electromagnetic field was strongest in the case of cancer cells, and the decrease in their survival was much greater compared to the healthy (normal) cells of the Hek-293 line.

Conclusions. Results of the study indicate that using a radio frequency electromagnetic field (2.4 GHz) has a clearly negative effect on the metabolic activity of glioblastoma cells. RF-EMF has much less impact on reducing the viability of normal cells (Hek-293) than cancer cells.

Key words
proliferation, morphology, glioblastoma cancer cells, human embryonic kidney cells, radio dielectric screen, radiofrequency electromagnetic field

INTRODUCTION

Mobile telecommunication devices, such as mobile phones and Wi-Fi, have become seamlessly integrated into the fabric of present-day telecommunications. The omnipresence of mobile phones transcends global demographics, exhibiting a high prevalence among individuals of diverse age groups, thus raising potential public health concerns. The adoption of mobile phones has shown exponential growth, as evidenced by the global count of over five billion individual mobile phone subscriptions in December 2017, with nearly three-quarters of the world’s population possessing a mobile subscription in 2020 [1].

The advent of 5G technologies operating on electromagnetic waves, has evoked the prospect of hyper-connected network environments capable of supporting augmented reality and virtual reality applications. The technology utilizes two main frequency bands – 3.5 GHz and 28 GHz. While the influence of the 3.5 GHz band on human physiology is akin to its predecessor, 4G, and leverages existing base stations, the 28 GHz band poses distinctive implications for human health, necessitating the installation of base stations in closer proximity to users. Consequently, the long-term health effects of 5G exposure on infants and children remain unclear, as comprehensive evaluations of the 5G impact on the young generation have not yet been undertaken [2].

Of note, mobile phone users are perpetually subjected to radiation emanating from their devices, even when the phone is not in active use. Additionally, the human body endures continuous electromagnetic (EM) exposure stemming from mobile communication infrastructures, especially from base station towers [3]. The proliferation of wireless network technologies, including wireless local area network (WLAN) hotspots and Wi-Fi networks, also escalates the potential
for excessive radiation exposure in the radiofrequency EM spectrum [4]. Research has disclosed elevated EM radiation levels in urban areas across different countries [5].

Mobile phones and Wi-Fi base stations emit electromagnetic fields characterized by radiofrequencies which harbour the potential for carcinogenicity in humans. The International Agency for Research on Cancer (IARC) at the World Health Organization (WHO) has ascribed a ‘possible human carcinogen’ classification (Group 2B) to radiofrequency level electromagnetic fields (RF-EMF), which include radiation from mobile devices and other non-ionizing EMF-emitting apparatus [6]. The usage of mobile phones has been linked to an increased risk of brain tumours, such as glioma, meningioma, and acoustic neuroma, owing to the proximity of the brain to the EMF radiation source during phone calls. The initial report on the association between mobile phone usage and increased brain tumour risk was published approximately twenty years ago [7]. Subsequently, extensive research has corroborated the impact of mobile phones on the incidence of malignant and benign brain tumours [8, 9, 10, 11]. However, a large international case-control study (INTERPHONE study, 2000) aimed at elucidating the connection between adult brain tumour risk and mobile phone utilization, failed to identify a pervasive increase in brain tumour incidence. Nevertheless, among individuals in the 10th highest decile of cumulative call time (≥1,640 hours), elevated odds ratios of 1.4 for glioma and 1.15 for meningioma were recorded [12].

It is imperative to acknowledge the fact that radiation exposure from mobile phones predominantly affects the region of the brain proximate to the ear, particularly the temporal lobe, situated on the side of the head where the phone is customarily held. A substantial portion of radiofrequency (RF) energy, ranging from 97% – 99%, is absorbed by the hemisphere of the brain corresponding to the phone’s location, with a significant fraction (50–60%) concentrating in the temporal lobe [13].

The adverse effects of electromagnetic radiation from mobile phones are more conspicuous in younger individuals. Research by Hardell et al. revealed a 5.2-fold elevated risk of malignant brain tumours after just one year of mobile phone usage in individuals under 20 years of age, compared to an odds ratio of 1.4 for all age groups [14]. Furthermore, children are found to absorb twice as much RF energy from mobile phones as adults owing to their smaller brain size, thinner ear pinna, less protective skin, and thinner skull, which facilitates deeper penetration of RF energy into the developing brain [15, 16]. Acoustic neuroma (vestibular schwannoma), a nerve sheath tumour, attracts specific attention in the context of mobile phone usage due to RF energy accumulating in the vicinity of the eighth cranial nerve, where acoustic neuromas typically originate.

Several studies have elucidated the links between mobile phone usage and parotid gland tumours [17], non-Hodgkin’s lymphoma [18, 19], and breast cancer [9]. The exposure to microwaves in the radiofrequency EM spectrum during mobile phone usage may also elevate risks related to testicular cancer, particularly when the phone is stored in close proximity to the testes [20].

The genesis of cancerous cells in this context is attributed to DNA damage incurred from the effects of high-frequency electromagnetic fields. The precise mechanisms underlying DNA alterations in response to RF-EMF exposure have not been exhaustively investigated. While the energy levels associated with RF-EMF exposure are insufficient to induce direct DNA strand breaks or crosslinks, it is inferred that DNA damage arises from cellular biochemical processes, including the generation of free radicals. Numerous studies have demonstrated the augmentation of free radical activity in response to RF-EMF exposure [21, 22]. RF-EMF exposure is implicated in the development of oxidative base damage in mouse spermatocyte-derived cell lines, mediated through the generation of reactive oxygen species (ROS) [21, 22].

RF exposure may induce various lesions in the brain, not all of which are associated with malignancy. Prenatal exposure of rats to 900 MHz RF radiation results in a reduction in the number of granule cells within the dentate gyrus, implying that RF-EMF impacts the proliferation of these cells in the rat hippocampus. Such cell loss may be attributable to an inhibition of granule cell neurogenesis within the dentate gyrus [23]. Subsequent post-natal exposure of rats to 900 MHz RF radiation induces a significant reduction in the number of pyramidal cells within the cornu ammonis [24].

Mice exposed to RF from mobile phones exhibit hyperactivity and memory impairment, potentially mediated by impaired glutamatergic synaptic transmission onto layer V pyramidal neurons within the prefrontal cortex [25, 26]. Research findings indicate substantial evidence (p < 0.002) for neuronal damage in the cortex, hippocampus, and basal ganglia of rats exposed to RF radiation from mobile phones, a phenomenon linked to the leakage of albumin across the blood-brain barrier (BBB) [25, 26]. Nittby et al. also observed alterations in the permeability of the blood-brain barrier induced by electromagnetic radiation from mobile phones, leading to albumin extravasation both immediately and 14 days following two hours of exposure [27]. Furthermore, other studies on rats suggest that RF-EMF exposure may induce oxidative stress within the brain [28], a phenomenon constituting a putative biological mechanism of RF-EMF effects.

The results of the studies conducted on rats revealed that long-term exposure of 2.4 GHz Wi-Fi radiation can alter the expression of some of the micro-RNAs in brain tissue [29], and may change deoxyribonucleic acid methylation, histone modification, and chromatin remodelling [30].

In the light of the above threats, the ideal solution would be to create a screen matched with the characteristics to suppress these harmful fields. EMF shielding is required in many cases to reduce its negative effects, especially in the case of cells and tissue vulnerable to DNA damage.

The aim of the presented in vitro study was to investigate the influence of RF-EMF on normal and cancer human cells. The level of cell proliferation and their morphology after a specific time of cell cultures placed within the electromagnetic field were examined. At the same time, the effectiveness of the dielectric screen in absorbing the radiation emitted was also examined.

MATERIALS AND METHOD

Cell cultivation. Cell cultures of the glioblastoma cell line (U-118 MG, ATCC® HTB-15™) and human embryonic kidney cell line (Hek-293 ATCC, CRL-1573™) were cultivated. The base medium used for the cell culture was Dulbecco’s Modified Eagle’s Medium (DMEM). The complete medium consisted of foetal bovine serum (FBS) to a final concentration of...
10%, nutrient mixture F-12 to a final concentration of 40%, and a mixture of antibiotics (penicillin, streptomycin, amphotericin) to a final concentration of 1%. Cells were grown in 25 cm² culture vessels at 37 °C in an atmosphere containing 5% CO₂ (New Brunswick S411 Incubator, Eppendorf). For passage, cells were briefly washed with Hank’s Balanced Salt Solution to remove residual FBS, and then incubated with 750 μl of 0.25% trypsin-EDTA solution for 10 minutes at 37 °C. After reaching the appropriate level of detachment of cells, evaluated using an inverted microscope, the culture vessel was replenished with fresh culture medium and poured into two new vessels. Changes of the culture medium took place, on average, every two or three days until the cells achieved a confluence of 80%. Due to the adherent nature of both cell lines, the cultivation conditions were the same.

Cytotoxicity test Cell Counting Kit-8. In order to analyse the influence of the electromagnetic field on cell lines, experiments were carried out according to the following scheme: cells were grown under standard conditions (DMEM, F-12, antibiotic, FBS) until they reached 80% confluency. After reaching the appropriate amount of confluence, the cell suspensions were transferred to multi-well vessels (96-well plate, 5000 cells/100 μl) and incubated for 24 hours.

Electromagnetic radiation measurement. Before the experiment, measurements of electromagnetic radiation inside the device connected to the network were carried out using the Trifield TF2. It turned out that inside the chamber the power density was 0.35 mW/m². Due to the generation of electromagnetic radiation by the incubator connected to the network, it was necessary to use a dielectric screen in control combinations in order to absorb the EMF generated by the device. The best results were achieved by placing a dielectric on both the top and bottom of the control cell culture plate. The power density then dropped to only 0.01 mW/m² (Tab. 1). For comparison, in combinations with the use of a high-frequency radiation generator (Wi-Fi) and an EMF-absorbing screen placed on the bottom and top of the tile, the power density dropped from 20 mW/m² to as little as 0.3 mW/m², and with the use of a screen only from the bottom – 3.5 mW/m². Bearing the results in mind, double-sided shielding of the cell culture was used in the research.

Table 1. Power density

<table>
<thead>
<tr>
<th>Lp.</th>
<th>Type of screening</th>
<th>mW/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chamber with Wi-Fi</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>Chamber with Wi-Fi screened from the bottom</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>Chamber with Wi-Fi screen from the top and bottom</td>
<td>0.3</td>
</tr>
<tr>
<td>4</td>
<td>Chamber without Wi-Fi</td>
<td>0.35</td>
</tr>
<tr>
<td>5</td>
<td>Control chamber without Wi-Fi + screened from the top and bottom</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Typical electric field shields use conductive media which needs grounding: metal layers, polymer or glass covered metal nets, conductive polymers, cotton/polyester blended with microscopic silver or steel fibres.

A co-author of this study [31, 32] has developed an advanced technology - a nanocomposite of Advance Dielectric Radiation Trap (ADR) and TEX, utilizing ADR Technology which causes the electric component of electromagnetic radiation to be absorbed by water, which is confined and dispersed in a variety of ways to form a dielectric matrix.

The basic matrix is woven from three kinds of yarn or threads: Rayon (viscose), Nylon (polyamide 66) and Schoeller thread (PES yarn with 20% metallic filing) in weight ratio of 55:45 without the Schoeller thread (PES yarn with 20% metallic filing). After weaving (using broken twill) the fabric was saturated with ADR Sol, and after it had dried had a weight of 110 g/m².

X-ray energy dispersive spectroscopy (EDS) was utilised to obtain information on the distribution of the different elements of the ADR TEX shield. All kinds of threads (viscose, PA 66 and PES) are built of carbon atoms which are visible in the microanalytical image as having green contrast. In Figure 1, EDS shows green contrast of carbon atoms in viscose rayon, PA 66 and PES together with the magenta, yellow and blue contrast of chromium, iron and nickel atoms in the Schoeller yarn.

To obtain information on the origin of the intrinsic dielectric absorption of ADR TEX shield, frequency dependence of tan δ of a fabric woven from two kinds of threads was measured: Rayon (viscose) and Nylon (polyamide 66) in weight ratio of 55:45 without the Schoeller thread (PES yarn with 20% metallic filing). After weaving (broken twill weave), the fabric was soaked with ADR Sol, dried in air. Figure 2 shows the dispersion of tan δ of an EMF shield made from Rayon/ Nylon 55/45 fabric with ADR Technology. A broad maximum centred at ~1 kHz can be observed, due to water dispersed in the Rayon/Nylon/ ADR Sol composite. Thus, dielectric absorption in the frequency range 10 kHz – 1 MHz of the ADR TEX shield (Fig. 3) is an intrinsic feature related to the presence of the Schoeller thread (PES yarn with 20% Cr/Fe/Ni filing).

Figure 1. EDS imaging of carbon C in (Rayon, PA 66 and PES) and chromium Cr (magenta), iron Fe (yellow) and nickel Ni (blue) in ADR TEX shield.

Figure 2. Room temperature frequency dependence of tan δ for a sample of Rayon/ Nylon 55/45 fabric shield made with ADR Technology.
The ADR TEX exhibits high dielectric absorption in the low-frequency range and does not need grounding and is also the screen electromagnetic HF by reflection (Fig. 4 and 5).

Each of the tested cell lines (cancer cells and normal cells) were exposed to an electromagnetic field with a frequency of 2.4 GHz emitted by a device specially designed for the purpose, in two variants: with and without a dielectric screen. In addition, the metabolic activity of cells without the electromagnetic field generated by the emitter, and without the screen, was tested in order to determine the impact of radiation generated inside the incubator connected to the network. The control cell lines were cultivated in conditions without the influence of RF-EMF generated by emitter but used the screen, which absorbed the radiation generated by the incubator. The experiment was conducted for 72 hours. Cell viability was measured after 24, 48 and 72 hours of incubation. To analyse changes in cell viability, CCK-8 – Cell Counting Kit – 8 (Sigma) was performed. The number of live (metabolically active) cells is proportional to the amount of formazan produced. This, in turn, is produced by the reduction of tetrazolium salts through the cellular dehydrogenase. After the specified cultivation time (24, 48, 72 hours), CCK-8 reagent was added to selected samples. Absorbance readings were made at 450 nm in the ELx808 plate reader (BioTek). The viability of test samples was defined

Figure 3. Room temperature frequency dependence of tan δ for a sample of ADR TEX shield placed between two dielectric spacers. Tan δ dispersion of the dielectric spacer is also apparent

Figure 4. Shielding efficiency of fabric ADR TEX [dB] Vertical polarization

Figure 5. Shielding efficiency of fabric ADR TEX [dB] Horizontal polarization
as the percentage of control samples viability, determined as 100% in each time, respectively. All variants of the experiment were performed in triplicate for both cell lines.

Analysis of changes in cell morphology. The study of changes in cell morphology of both cell lines was performed using the Axiovert 200 inverted light microscope (Zeiss) and ZOE Fluorescent Cell Imager device (Bio-Rad). Images of cells were taken after 1, 24, 48 and 72 hours, respectively. Morphology analysis was performed for both test samples (exposure to the electromagnetic field), samples with and without a dielectric screen and control samples (free from the influence of RF-EMF).

Description of the hardware part – an electromagnetic field generator. The number of devices with radio transmitters around us is steadily increasing. We are thus subjected to increasing exposure to radio waves and it is increasingly difficult to find a place without coverage, especially in cities. In an increasing number of houses, not only Wi-Fi but also domotics and all kinds of automation devices, are being constructed. The transmission of information via wires is abandoned in favour of wireless technology. A large number of commercially available devices contain basic IoT nodes. Such devices connect, for example, to the cloud using a local Wi-Fi network.

Considering the above, it was decided to choose ESP systems and a device that could be both a basic IoT node and an independent, fully configurable router. This is a small module that allows connection with, for example, Arduino to a wireless network, which is widely popular among electronics and new technology enthusiasts. It can work as a standalone system with sensors connected to GPIO ports and has a relatively large memory for 1MB Flash software. Recently, the ESP8266 revolutionized the world of IoT with its entry into the market, quickly setting its own standards. The transmission of information via wires is abandoned in favour of wireless technology. A large number of commercially available devices contain basic IoT nodes. Such devices connect, for example, to the cloud using a local Wi-Fi network.

ESP8266 is a cost-effective microcontroller with a rich set of peripherals, a powerful processor that achieves an average TX power of +19.5 dBm and a network standard 802.11b, operating parameters, such as the output power of the radio power amplifier +19.5dBm and the network standard 802.11b mode, are configured rigidly in the firmware. The operating frequency of the device was around 2.4 GHz. Detailed frequency information in the function of channel number is shown in Table 1. The transceiver for radio frequency supports a total of 14 channels, aligning with the standards set by IEEE802.11b/g/n. The 2.4 GHz transmitter converts quadrature baseband signals to 2.4 GHz, driving the antenna through a high-power CMOS power amplifier. Enhanced linearity of the power amplifier is achieved through the digital calibration function, resulting in cutting-edge performance that achieves an average TX power of +19.5 dBm. The module will not work without the appropriate software. There are many ways to programme ESP. First, the manufacturer provides an official SDK, and there is also an alternative community-created SDK called ESP-OpenSDK. In addition, other solutions are available that allow the creation of applications in C++, Lua, and even MicroPython. ESP can also be treated as ordinary communication modules with which information is exchanged using AT commands – these are also used to configure the device.

The list of available tools for developers is also described on Wikipedia, many examples can also be found on the manufacturer’s website. However, most people use two methods. The first one is programming the ESP8266 in the Arduino environment. After installing the appropriate libraries, programmes can be written on the ESP, the same as on publicly available Arduino modules. The second popular option of using ESP modules is the use of ready-made ESP Easy batches, which allow use of the the module’s peripherals from the panel available through a standard web browser (the module then becomes a server).

For the purposes of this study, the software was created in the Arduino environment. The device was configured to automatically connect to the local Wi-Fi network configured on the router. The design of the experimental setup is shown in Figure 6.

When creating the sets, efforts were made to simulate the communication conditions of the sensors with the network as correctly as possible. Therefore, the protocol included sending information from the ESP modules via the local Asus RT N12, 2.4GHz router, for example, to the cloud. The method of communication between the test stands and the router is shown in Figure 7.

ESP operating parameters, such as the output power of the radio power amplifier +19.5dBm and the network standard 802.11b mode, are configured rigidly in the firmware. The operating frequency of the device was around 2.4 GHz. Detailed frequency information in the function of channel number is shown in Table 1. The transceiver for radio frequency supports a total of 14 channels, aligning with the standards set by IEEE802.11b/g/n. The 2.4 GHz transmitter converts quadrature baseband signals to 2.4 GHz, driving the antenna through a high-power CMOS power amplifier. Enhanced linearity of the power amplifier is achieved through the digital calibration function, resulting in cutting-edge performance that achieves an average TX power of +19.5 dBm. The module will not work without the appropriate software.
dBm for 802.11b transmission and +18 dBm for 802.11n (MSC0) transmission. ESP8266EX incorporates the TCP/IP protocol and the comprehensive 802.11 b/g/n WLAN MAC protocol. Within the Distributed Control Function (DCF), it supports Basic Service Set (BSS) STA and SoftAP operations. The power management is efficiently handled with minimal intervention from the host to reduce the active-duty period [2].

Table 2. ESP frequency channel

<table>
<thead>
<tr>
<th>Channel No.</th>
<th>Frequency (MHz)</th>
<th>Channel No.</th>
<th>Frequency (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2412</td>
<td>8</td>
<td>2447</td>
</tr>
<tr>
<td>2</td>
<td>2417</td>
<td>9</td>
<td>2452</td>
</tr>
<tr>
<td>3</td>
<td>2422</td>
<td>10</td>
<td>2457</td>
</tr>
<tr>
<td>4</td>
<td>2427</td>
<td>11</td>
<td>2462</td>
</tr>
<tr>
<td>5</td>
<td>2432</td>
<td>12</td>
<td>2467</td>
</tr>
<tr>
<td>6</td>
<td>2437</td>
<td>13</td>
<td>2472</td>
</tr>
<tr>
<td>7</td>
<td>2442</td>
<td>14</td>
<td>2484</td>
</tr>
</tbody>
</table>

The packet size was defined as 4095. Serial communication was used to control the correctness of the connection – the popular RS232 port. Thanks to this, after connecting to a computer, it was possible to follow the process of connecting to the router and data exchange on an ongoing basis. For simplicity, UDP was the communication protocol over Wi-Fi for data exchange.

The spectrum analyser GWinstek GDS-3504 was used to measure the maximum power emitted by the ESP device by soldering onto the pins just in front of the antenna. The modules were powered from 5V switching power supplies via the micro-USB connector. For the purposes of the study, 30 sets were assembled and connected to two routers.

Due to the heating of the modules, special spacers made of dense polystyrene were used between the modules and the plates on which the cells were grown. This completely reduced the uncontrolled increase in temperature in the cells.

Statistical analysis. The survival results of U-118 MG and Hek-293 cells for three different culture times (24h, 48h, 72h) were subjected to statistical analysis. Mean values were tested for normal distribution (Shapiro-Wilk test) and homogeneity of variance (Levene test for homogeneity of variance across multiple runs). To compare the mean values, the t-test was used, for which the following values were adopted: p < 0.001 (** confidence level 0.999), p < 0.01 (** confidence level 0.99), and p < 0.05 (* confidence level 0.95).

RESULTS

The influence of RF-EMF on U-118 MG and Hek-293 cells is presented in Figure 8. The electromagnetic field exposure caused a significant decrease viability of U-118 MG and Hek-293 cells in the following days of observation, compared to the control group. The greatest decrease occurred after 72 hours of incubation. The impact of the electromagnetic field was strongest in the case of cancer cells, and the decrease in their survival was much greater in comparison with the healthy (normal) cells of the Hek-293 line. There was no significant effect of the use of a dielectric screen on the survival of the tested cells. It should be noted that this screen effectively absorbed the electromagnetic radiation emitted by the cell culture incubator connected to electrical network. Cell viability in control combinations without the use of RF field, protected with a dielectric screen, was significantly higher compared to the combination without an electromagnetic field and screen. This was the case with both U-118 MG and Hek-293 cells.

Figure 7. Schematic diagram of communication between ESP modules and the router

Figure 8. Changes in viability of U-118 MG and Hek-293 cells cultivated with and without RF-EMF and dielectric screen

In order to illustrate changes in the morphology and number of cells, photos of cells exposed to the electromagnetic field and control samples were taken. The analysis of U118 and Hek cells morphology under the influence of the electromagnetic field did not show any changes in relation to the control. Morphology was normal for this type of cells. The microscopic image clearly showed the influence of the electromagnetic field on the decrease in the number of cells. The greatest decrease occurred after 72 hours of incubation. Morphology of U-118 MG cells and changes those number cultivated with and without RF-EMF shown in Figures 9 and 10.
Figure 9. Microscopic image of U-118 MG cells cultivated in the electromagnetic field. A – cells 1h after the start of experiment; B – cells after 24h; C – cells after 48h; D – cells at the end of experiment (after 72h cultivation in the electromagnetic field).

Figure 10. Microscopic image of U-118 MG cells cultivated without the electromagnetic field (control group). A – cells 1h after the start of experiment; B – cells after 24h; C – cells after 48h; D – cells at the end of experiment (after 72h of cultivation).
Glioblastoma, the most common malignant tumour of the brain in adults, and unfortunately, increasingly often in children, is usually rapidly fatal. It is estimated that about 5 out of 100 000 people suffer from it annually. The average survival time of a patient diagnosed with glioblastoma, using current treatment standards, is just over 15 months from diagnosis, and median survival is estimated at 11 -12 months [33, 34]. Research shows that only 3 – 8% of patients live longer than three years [35]. Such a survival period, equal to and greater than 2.5 – 3 years from the diagnosis, is called long-term survival (LTS) [36, 37, 38].

Despite the progress made in recent years in the field of oncology, results of the treatment of malignant brain tumours remain unsatisfactory. The current standard of care for newly-diagnosed glioblastoma is surgical resection to the extent feasible, followed by adjuvant radiotherapy and chemotherapy. Unfortunately, due to the infiltrating nature of tumour growth and the location of glioblastoma in areas of the brain that are considered inoperable (due to their importance, for example, for speech understanding or conscious body movements), radical surgical treatment carried out in many cases without damaging these key brain areas is not possible. Generally, although patients may often be provided with the most promising prospects when the tumour is removed by surger, most patients tend to survive for a maximum five years after surgery [39]. The death of patients is mainly caused by tumour recurrence, and metastasis as a result of the remaining cancer cells which tend to be difficult to remove entirely during the surgery [40, 41, 42]. Unfortunately, patients are often unable to complete the prescribed chemotherapy cycles due to its adverse impact on their overall health. In view of the above, there is a considerable unmet need for an entirely different therapeutic approach, which may ensure better outcome and less toxicity.

Literature data indicate that electromagnetic radiation does not always have a negative effect on humans, including the development of cancer. It turns out that on the contrary, it can have a destructive effect on cancer cells. One generalized effect of the EMF exposure may be the morphological changes of the cancer cells as demonstrated by [43]. This was not confirmed in research by the authors of the current article. Morphology of the U-118 MG cancer cells was normal for this type of cells. It has been shown that electromagnetic fields (EMF) produce anti-cancer effects in vitro, affecting cell metabolism [44, 45]. The anti-cancer effect of the electromagnetic field was also found in the authors’ in vitro studies who found that the RF electromagnetic field with the frequency 2.4 GHz affects negatively on metabolic activity of glioblastoma cells. It was found that this electromagnetic field had a significant influence on the decrease viability of glioblastoma U-118 MG and Hek-293 cells, but the effect on cancer cells was significantly stronger than on normal cells.

Markov and Vianale [46, 47] indicate that there are many factors affecting the biological responses, including amplitude, frequency and duration of exposure to the applied EMF, as well as the biological systems, e.g. cells, tissues andorganisms. Akbarnejad et al. [44] suggest that the metabolic activity of brain glioblastoma cells depends on the frequency and amplitude of the applied electromagnetic field. They identified the impact of extremely low-frequency pulsed electromagnetic fields (ELF-PEMFs) applied at various frequencies and amplitudes in terms of its effect on cell cycle, apoptosis and viability of GBM cell line (U87) investigated in vitro. Analyses investigated morphological traits, cell viability and gene expression of proteins engaged in cell cycle regulation (Cyclin-D1 and P53) and apoptosis (Caspase-3). After 24h, the cell viability and Cyclin-D1 expression increased after exposure to 50 Hz, 100 G (30%, 45%), whereas they decreased at the exposure 100 Hz, 100 G (29%, 31%) and 10 Hz, 50 G (21%, 34%), whereas P53 and Caspase-3 were elevated only after exposure of cell line to 100 Hz, 100 G. According to the authors, the fact that some of the ELF-PEMFs frequencies and amplitudes arrest U87 cells growth could open the way to developing novel therapeutic approaches. Currently, high hopes are attached to the use of an electromagnetic field in the treatment of brain glioma. Some research results are very promising and indicate that therapeutic use of an electromagnetic field with the appropriate frequency and amplitude may become a new, effective and safe method for treating brain gliomas.

Lately, tumour treating fields (TTFs), which is an antimitotic therapy using alternating electrical fields in order to disrupt the ability of cancer cells to divide, seems to be a novel promising strategy for the treatment of brain tumours aiming at providing an improved survival rate for many patients. The TTFs act upon specific highly charged proteins that are crucial for cell division; as a result, they are capable of slowing down tumour growth and the ability of the tumour to spread [48, 49]. In the treatment of brain gliomas a promising alternative approach uses an implantable ultrasound-powered tumour treating device (UP-TTD), which electromagnetically disrupts the rapid division of cancer cells, at the same time causing no adverse effects on normal neurons; consequently, it may safely inhibit the recurrence of brain cancer. Yang et al., in their in vitro and in vivo experiments on tumour-bearing rats [45], showed a significant therapeutic effect of the UP-TTD, consisting in a ~58% inhibition of growth rate in the case of clinical tumour cells, and ~78% reduction in the area affected by cancer.

A recently approved treatment which applies electromagnetic fields alternating at 200 kHz, termed Optune™ therapy, is now available for recurrent glioblastoma multiform GBM, both as a monotherapy and used in combination with temozolomide for newly-diagnosed GBM [49]. This approach is also being tested in clinical trials to treat other cancers. It is hypothesised that the mechanism of its action includes disruption of tubulin dimers, mitotic spindles, and cell division as a result of electric field-induced dipole alignment and dielectrophoresis [50]. A modest effect of this procedure was also reported for the cell survival, increasing the median overall survival by 0.6 months in the case of recurrent GBM, whereas in recently-diagnosed GBM it was by 31% [49]. It should be stressed here that even this seemingly modest effect is considered significantly encouraging by patients.

Finally, it should be mentioned that before the start of the research for the current study, it turned out that the cell culture incubator connected to the electrical network generates strong electromagnetic radiation, and the power density was 0.35 mW/m². It was necessary to protect the tested samples in the control combination with a special dielectric screen, based on the ADR technology. This screen effectively absorbed the electromagnetic field emitted by the incubator.
which protected against the influence of an additional factor on cell metabolism. This research clearly showed the influence of radiation on the metabolic activity of the tested cell lines. Thus, in research conducted on living organisms inside incubators, it is necessary to protect the samples against harmful electromagnetic radiation generated by this device, otherwise the obtained results will be unreliable. For example, when examining the effect of drugs on the development of cancer cells, it will not be known until the end whether the electromagnetic field or the tested factor influenced the cell metabolism.

CONCLUSIONS

The presented results indicate that 1) using a radiofrequency electromagnetic field (2.4 GHz) has a clearly negative effect on the metabolic activity of glioblastoma cells; 2) the RF electromagnetic field (RF-EMF) exposure caused a significant decrease viability of glioblastoma cells line U-118 MG; 3) RF-EMF has much less impact on reducing the viability of normal cells (Hek -293) than cancer cells.

In research conducted inside cell culture incubators, it is necessary to protect the samples against the influence of electromagnetic radiation generated by this device on cell metabolism. The dielectric screen constructed by ADR Technology used in the investigations effectively protects against the harmful effects of the electromagnetic field generated by the cell culture incubator.

DECLARATION BY THE AUTHORS

The authors declare that they have no competing interests. All authors concurred with the submission and have seen a draft copy of the manuscript and agree with its publication. The manuscript has not been submitted for publication in any other journal.

REFERENCES