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Abstract
Introduction. Coronaviruses (CoVs) are positive-strand RNA viruses with the largest genome among all RNA viruses. They are 
able to infect many host, such as mammals or birds. Whereas CoVs were identified 1930s, they became known again in 2003 
as the agents of the Severe Acute Respiratory Syndrome (SARS). The spike protein is thought to be essential in the process 
of CoVs entry, because it is associated with the binding to the receptor on the host cell. It is also involved in cell tropism 
and pathogenesis. Receptor recognition is the crucial step in the infection. CoVs are able to bind a variety of receptors, 
although the selection of receptor remains unclear. Coronaviruses were initially believed to enter cells by fusion with the 
plasma membrane. Further studies demonstrated that many of them involve endocytosis through clathrin-dependent, 
caveolae-dependent, clathrin-independent, as well as caveolae-independent mechanisms.  
Objectives. The aim of this review is to summarise current knowledge about coronaviruses, focussing especially on CoVs 
entry into the host cell. Advances in understanding coronaviruses replication strategy and the functioning of the replicative 
structures are also highlighted. The development of host-directed antiviral therapy seems to be a promising way to treat 
infections with SARS-CoV or other pathogenic coronaviruses. There is still much to be discovered in the inventory of pro- 
and anti-viral host factors relevant for CoVs replication. The latest pandemic danger, originating from China, has given our 
previously prepared work even more of topicality.
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INTRODUCTION

Coronaviruses (CoVs) are positive-strand RNA viruses 
from the Coronavirinae subfamily which, together with 
Torovirinae, belong to the large Coronaviridae family in 
the Nidovirales order. The Coronavirinae subfamily is 
divided into different genera of alphacoronavirus (α-genus), 
betacoronavirus (β-genus), gammacoronavirus (γ-genus) and 
deltacoronavirus (δ-genus) [1].

Coronaviruses are able to infect a variety of mammals 
and other species. CoVs infections cause especially enteric 
and respiratory diseases in humans, including the common 
cold, as well as diseases in animals, Infrequently they are 
the reason for hepatitis and multiple organ failure [2]. The 
first member of the coronaviruses was identified in the 1930s 
[3], and in the 2003 they have become known again and 
classified as agents of Severe Acute Respiratory Syndrome 
(SARS) [4]. SARS-CoV is a human enveloped coronavirus 
with single positive-strand RNA of 25–31kb with a 5’-cap 
and 3’-poly(A) tail [5]. In 2002–2003, SARS-CoV caused 
almost 8,000 infections with a mortality rate of 10% [6, 7]. 

Middle East Respiratory Syndrome Coronavirus (MERS-
CoV), first identified in Saudi Arabia in 2012, is also highly 
pathenogenic. As of 4 December 2015, 1,621 laboratory-
confirmed cases of infection with MERS-CoV were notified 
with approximately 36% mortality (584 deaths related to 
MERS-CoV) [8]. Currently, the rapidly-spreading COVID-19 
pandemic, caused by SARS-CoV2 is being observed. The 
number of patients increases rapidly and as of 2 April 2020, 
there are over a million confirmed cases, and more than 50 
thousand deaths [9].

OBJECTIVES

The aim of th study is to summarise current knowledge about 
coronaviruses and review the results of studies on CoVs entry 
into the host cell. Advances in understanding coronaviruses 
replication strategy and the functioning of the replicative 
structures are also highlighted.

Coronavirus genome. The size of the Coronaviruses varies 
from 80–120nm. Their 5’-capped single-positive strand RNA 
genome encodes 4–5 structural, 15–16 nonstructural and 1–8 
accessory proteins [10]. The 5’- and 3’-ends of the CoVs genome 
consists of Untranslated Regions (UTRs) with cis-acting 
elements essential for viral replication and transcription. 
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CoVs genome size ranges from 26.2–31.7 kb and contains 6–10 
Open Reading Frames (ORFs) [11]. The first ORF (ORF1a and 
ORF1b) encodes the replicase proteins and extends over 2/3 
of the CoV genome. The replicase is a mandatory factor for 
the transcription of both: genomic (full-length) minus-strand 
template and subgenomic (discontinuous transcription) 
minus strand synthesis. As a result of polyproteins processing 
by proteinases, 16 non-structural proteins are generated. 
No-structural protein 3 (nsp3), non-structural protein 4 
(nsp4) and non-structural protein 6 (nsp6) are considered 
to be responsible for the stability of the CoVs Replication/
Transcription Complex (RTC). The remaining 1/3 of the ORF1 
encodes 4 structural proteins: S (spike protein), E (envelope 
protein), M (membrane protein) and N (nucleocapsid protein). 
The M and E proteins are responsible for the assembly of the 
virions, whereas the S protein allows viral entry into the host 
cell, while the N protein is required for encapsidation of viral 
RNA. However, some of the CoVs also contain the additional 
HE (hemagglutinin esterase) viral protein, which is known 
to be involved in the host cell membrane interactions [10, 11, 
12]. These structural proteins are created by discontinuous 
transcription during the subgenome minus-strand RNA 
synthesis [13, 14]. The genomic positive-sense RNA is rewritten 
into a negative-sense RNA template by RNA-dependent RNA 
polymerase (RdRp). Then, RdRp has the possibility to move 
to the 5’-end to finish the negative subgenomic (sg) mRNA, 
which might be a template for the positive-sense sgRNA 
synthesis. It has been shown that only the first unique gene 
from 5’-end of all sgRNA is translated. It last approximately 
75–90 minutes, untill both minus and plus-strand RNA can 
d be detected after the infection [15, 16, 17, 18].

Spike protein as the main agent of coronavirus cell entry. 
The spike protein plays a major role in the entry to the 
host cell. The infection is caused by a viral particle which 
interacts with the host receptors on the cell surface. This viral 
and cellular fusion triggers conformation of the S protein 
[19] which regulates cell tropi and host range, and also is 
involved as a main target of neutralizing antibodies during 
infection [20].

The coronavirus spike is athe class I of transmembrane 
proteins, with a typical size ranging from 1,160–1,400 amino 
aci, and contains 21–35 N-glycosylation sites. Many studies 
have demonstrated that fusogenic conformational changes 
cause the generation of trimers composed of harpins on the 
virion surface [21, 22, 23, 24].

As a member of the class I viral fusion proteins [25, 
26, 27, 28], the spike protein is consists of 3 segments: an 
ectodomain, a single-pass transmembrane anchor, and a short 
intracellular tail [29, 30]. The ectodomain of the S protein 
consists of 2 domains: S1 (N-terminal), which is responsible 
for binding to the receptor and subsequently attaching the 
virion to the cell membrane, and the S2 (C-terminal), the 
most conserved region of the spike protein. The S2 subunit 
includes domains involved in membrane fusion: fusion 
peptide (FP), heptad repeat domains-1 and -2 (HR1, HR2) and 
the transmembrane domain (TM) [31]. Commonly, domains 
of the spike protein remain connected in alpha- and majority 
of beta-corona viruses, but in gamma- and also same cases of 
beta-coronaviruses the spike protein is divided between those 
domains [19]. The S1 domain has 2 independent subdomains: 
N-terminal (S1-NTD) and C-terminal (S1-CTD). Both exhibit 
ability to bind molecules, sugars or proteins, as receptor 

binding domains (RBDs) [19]. RBDs enclose primary 
neutralization epitopes, activate host response, and for this 
reason might be a part of vaccines directed against infections 
caused by coronaviruses [20, 32, 33, 34, 35, 36].

Trimers of harpins consist 2 heptad-repeat regions (HR) 
in the S2 domain. They are assembled as prolonged triple 
helical coiled-coil motif (HR1) surrounded by 3 HR2 motifs, 
which are much more shorter [37, 38, 39]. Some studies have 
already been conducted on the crystal structure of CoVs 
RBDs, together with their cognate receptors [40, 41]. Casais 
at al. also demonstrated the S protein importance in tropism. 
They decided to use a recombinant Infectious Bronchitis 
Virus (IBV), a member of the Coronaviridae that replicates 
primarily in the respiratory tract as well as in epithelial 
kidney cells [42]. IBV strains are able to infect only chicken 
embryo cells. Thus, the authors decided to produce the rIBV 
in which the Beaudette S glycoprotein gene in Beau-R was 
replaced with the corresponding sequence derived from IBV 
M41-CK [43, 44]. The IBV Beaudette strain is able to spread 
in CK, CEF, BHK-21, and also in Vero cells. As opposed to 
IBV Beaudette, IBV M41-CK can only infects CK cells [45]. 
These differences provide examination of the cell tropism 
mechanism. They investigated BeauR-M41(S), a recombinant 
infectious bronchitis virus (rIBV), in which the ectodomain 
region of the S gene from IBV M41-CK was replaced by the 
corresponding region of the IBV Beaudette genome. As 
a result, BeauR-M41(S) obtained the same cell tropism as 
IBV M41-CK in different cell types, and indicated that spike 
protein is a determinant of cell tropism [42].

The chimeric virus is another example that perfectly shows 
the importance of the S protein regarding cell tropism. Mouse 
hepatitis virus (MHV) strains cause hepatic, neurological, 
respiratory and enteric diseases. One of the most studied 
is the weakly neurovirulent A59 strain, which causes 
moderate hepatitis and acute encephalitis. It undergoes 
clearance from the central nervous system (CNS) and the 
liver by strong CD8 T-cell response. Unfortunately, the viral 
RNA usually remains in the spinal cord and causes acute 
infection [46, 47, 48]. The JHM strain (also called JHM.
SD or MHV-4), is highly neurovirulent and causes fatal 
encephalitis and only minimal hepatitis, while the MHV-2 
strain is highly hepatotropic. By introduction of the JHM 
genes to the MHV-A59 strain, Navas at al. have shown 
enhanced virulence of the recombinant virus, which occurs 
by MHV receptor CEACAM1a-dependent and independent 
mechanisms as well as hepatotropism, and thereby the major 
role of the S protein in determination of organ tropism and 
neurovirulence [49, 50]. Replacement of the spike protein in 
A59 by the S protein from JHM causes a robust neurovirulent 
phenotype of the recombinant A59 virus (rA59). This chimera 
caused increased inflammation and the rate of viral antigen 
spread, compare3d to the wild type of A59 [51, 52, 53].

Finally, Walls et al. contributed to the understanding of 
CoVs entry. They produced a mutated MHV S ectodomain 
trimer with enhanced stability, and therefore high affinity 
to the CEACAM1 receptor, and determined its structure at 
4.0 Å resolution by single particle cryo-electron microscopy. 
They proved that the S trimer has 3 central helices that are 
packed through a central part. The S1 subunit has a ‘V’ 
shape. The N-terminal subdomain is mostly composed of 
domain A, while C-terminal are β-rich domains. S2 domains 
contain long α-helices and are associated with membrane. 
Researches highlight that this domain is especially similar to 
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the paramyxovirus F proteins with the core, central helix and 
upstream helix. They also indicated that in the conformation 
of pre-fusion, the S1 subunits interlock and therefore form a 
crown around the S2 trimer stabilizing it [54].

There is a very large similarity between the S1NTD structures 
and human galectin. S1NTD adopts β-sandwich fold where 2 
anti-parallel β-sheet layers form a core structure. Depending 
on the genera, an α-helix (α and δ coronaroviruses) or a 
celling-like structure (β- coronaroviruses) is attached to the 
upper part of the core. Three-stranded β-sheet and another 
α-helix are attached to the bottom of the core structure, 
regardless of the type of virus. Research on the structure and 
functions S1-NTDs from different genera coronaroviruses 
suggest that all of them have the same evolutionary origin, 
and acquired the galectin gene from the host and included 
it in their spike gene which began to encode S1-NTD. Next 
the galectin fold was preserved during evolution [55, 56].

Coronaroviruses α, β and δ show the same structural 
topology but different structural folds in terms of their 
S1-CTDs. coronarovirus α S1-CTD has a β-sandwich core 
structure and is similar to the δ coronaroviruses S1-CTDs 
which containing 2 β-sheet layers: one is a 3-stranded anti-
parallel β-sheet, the second is a 3-stranded mixed β-sheet. 
β-coronavirus S1-CTDs has a β-sheet core. Coronarovirus α 
and δ S1-CTDs core contains receptor binding motifs (RBMs) 
on the top in the form of 3 loops, but the closed conformation 
of the S1-CTD prevents binding of the receptor. To bind its 
receptor, the S1-CTD would need change conformation to 
an open structure. The RBM in β-coronavirus S1-CTD is a 
long continuous subdomain.

The structures of SD1 and SD2 are similar to those of their 
counterparts in α- and β-coronavirus spikes. Both of them 
adopt a small β-sandwich fold, except that SD1 contains 2 
antiparallel β-sheets (2-stranded and 5-stranded), and SD2 
contains 2 three-stranded β-sheets. Two S1 subdomains 
connect S1 and S2. There are both structural and mechanistic 
similarities between coronarovirus S2 and influenza HA2. 
This suggests that the 2 viral membrane fusion proteins 
are evolutionarily related. Parts of S2 form 6-helix bundle 
structures corresponding to HR-N and HR-C. The similarity 
betweethe influenza virus and coronaroviruses allows some 
assumptions to be made about the construction and principles 
of S2. Regardless of this assumption, should be confirmed by 
the atomic structure of po-fusion CoVS2 [55, 56].

The N protein as a virulent principle. The nucleocapsid 
protein (N protein) is an RNA binding protein that interacts 
with the M protein during e virion assembly. It is also 
involved in the formation of the viral capsid [57] and plays 
an important role in the replication. First of all, it associates 
with both the genomic and subgenomic mRNA [58], as well 
as with the microtubules [59]. Moreover, N protein blocs 
the activity of L RNase by being the antagonist of type I 
Interferon (IFN) [60], and also inducts the fibrinogen-like 
protein 2, subsequently causing the increase of liver damage 
after infection [61,62, 63].

The nucleocapsid protein consists of 2 domains, an 
N-terminal (N-NTD) and a C-terminal (N-CTD). It also 
has 3 conserved regions (I, II, III) that are detached by A and 
B regions. Region II is responsible for RNA binding [64, 65] 
while region III plays an important role in the binding of 
the M protein [57]. NTD domain begins from the conserved 
region I and ends with conserved region II. CTD domain is 

located inside the conserved region II and ends just before 
region B [66, 67, 68, 69].

Cowely at al. investigated the role of the N protein in MHV-
induced disease using the A59 and JHS strains described above. 
Their research was based on the fact that almost 95% of the 
amino acid level in the N proteins of those strains is identical. 
They used 2 chimeric viruses with the exchange of N proteins 
between the A59 and JHS strains, compared to the wild-strains. 
Surprisingly, no morphological changes were observed, but 
the observation focused on the virulence obviously satisfied 
their expectations, and statistically significant differences 
were noted in the replication in CNS. Moreover, the antigen 
expression in the brain was enhanced when the A59 chimera 
was used with the N protein from JHS [70].

The same chimera (rA59/NJHM) conferred enhanced 
virulence by an approximately 1,000-fold lower LD50 (Lethal 
Dose 50). In comparison, the chimera (rJHS/NA59) showed 
similar, but rather less results [70] This confirmed that the 
MHV antigen expression in the CNS consistently correlates 
with the virulence [51, 71].

Coronavirus receptors. The first and also essential step of 
the host cell infection is receptor recognition by the virus. As 
described above, the S protein is responsible for first binding 
to the specific receptor on the surface, and subsequently 
fusing with the host cell [31, 72]. Another important step 
involves coronavirus RBD and its receptor. Understanding 
the receptor recognition mechanisms by CoVs seems to 
be crucial for human research against coronaviruses. The 
diversity of CoVs receptors are presented in Table 1.

Table 1. Coronaviruses fusion with the membrane and entry to the 
host cell

Genera CoV Tropism Receptor – Domain Reference

α-genus NL63
alveolar cells type I and II, 
endothelial cells, ciliated 
bronchial cells

ACE2 – S1CTD [40]

229E
alveolar epithelial 
cells type I, alveolar 
macrophages

APN – S1CTD [165,166]

TGEV non-ciliated bronchial cells
APN – S1CTD, sugar 
– S1NTD

[74]

PRCoV non-ciliated bronchial cells APN – S1CTD [74]

β-genus OC43
epithelial and neuronal 
cells

9-O-acetylated 
sialic acid – S1NTD 
domain A

[166,167]

HKU1
ciliated airway epithelial 
cells, type II alveolar 
epithelial cells

9-O-acetylated 
sialic acid – S1NTD 
domain A

[166,168]

MHV
leukocytes, epithelia, and 
endothelia cells

CEACAM1 – S1NTD, 
distal loops domain A

[41]

BCoV non-enteric epithelial cells
9-O-acetylated 
sialic acid- S1NTD 
domain A

[75]

MERS
endothelial cells, 
endothelial tissues

DPP4 – S1CTD, 
β-motif, domain B

[39]

SARS-
CoV-1

alveolar cells type I and II, 
endothelial cells, ciliated 
bronchial cells

ACE2 – S1CTD, 
β-motif, domain B

[37]

SARS-
CoV-2

alveolar cells type I and II, 
endothelial cells, ciliated 
bronchial cells

ACE2 – S1CTD, 
β-motif, domain B

[37]

γ-genus IBV epithelial cells sugar – S1NTD [75]
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All the human CoVs receptors belong to the same family 
– membrane ectopeptidases. However, it has been shown 
that viral entry is not dependent on the catalytic activity of 
these enzymes. The crucial step is co-expression of other 
host peptidases [76, 77], e.g. human transmembrane serine 
proteases HAT and TMPRSSII are involved in the cleaving 
and activating of the MERS-CoVs and SARS-CoVs Spike 
proteins [78, 79].

Angiotensin Converting Enzyme 2 (ACE-2), the functional 
receptor for the spike glycoprotein of the human SARS-CoV, 
is a zinc-dependent mono-carboxypeptidase that catalyzes 
the cleavage of angiotensin [80]. It regulates cardiovascular 
function [81] and protects against severe acute lung failure 
[82]. ACE-2 is expressed on alveolar cells types I and II, 
endothelial cells, and also on ciliated bronchial cells [83].

Aminopeptidase N (APN), also known as CD13, is a zinc-
dependent ectopeptidase that cleaves proteins peptides from 
N-terminal amino acid. APN is a type II transmembrane 
protein associated with various functions, such as pain 
sensation, blood pressure regulation, cancer angiogenesis 
and metastasis, immune cell chemotaxis as well as cell-cell 
adhesion [84]. Two common CoVs are able to recognize APN: 
TGEV that infects cells of the small intestine and respiratory 
track, and PRCoV (Porcine Respiratory Coronavirus) that 
infects only pulmonary cells. The one and only difference 
between spikes of those strains is that the S protein from 
TGEV has a haemagglutinating activity that enables TGEV 
to replicate in the gut [74]. APN is mostly expressed on non-
ciliated bronchus cells [85].

Carcinoembryonic Antigen-Related Cell Adhesion 
Molecule 1 (CEACAM1) is a cell adhesion molecule 
that occurs on leukocytes, epithelia, and endothelia. It is 
responsible for apoptosis, angiogenesis, tumour suppression, 
and the induction of immune responses [86, 87, 88]. However, 
it has been noted that the neurovirulence of the JHM strain 
correlates with the enhanced spread of the virus in the 
brain and not fully dependent on CEACAM1. Miura at al. 
demonstrated that ceacam1-/-mice could also be infect by 
the JHM strain, but with a 100-fold higher lethal dose [89].

Dipeptidyl Peptidase-4 (DPP4), a serine exoprotease, plays a 
multifunctional role in physiological processes by removing 
N-termini from many peptides, including hormones, 
neuropeptides, chemokines and mitogenic growth factors 
[86, 90]. DPP4 is commonly expressed in endothelial cells 
as well as multiple epithelial tissues [91].

Finally, some coronaviruses, e.g. avian infectious bronchitis 
virus (IBV), bind sugars that play an essential role in a variety 
of biological processes, such as cell interactions or immunity 
[92, 93].

Unfortunately, those examples do not explain how 
coronaviruses are able to recognize their specific receptors. 
There are 6 representative structures composed of S1 domains 
and its receptor: SARS-CoVs S1-CTD and ACE2 [37], MERS-
CoV S1-CTD and DPP4 [39,94] HCoV-NL63 S1-CTD and 
ACE2 [40], PRCoV S1-CTD and APN [95], MHV S1-NTD 
and CEACAM1 [41], OC43, HKU1, BCoV 9-O-acetylated 
sialic acid and S1-NTD [75] (Tab. 1).

There is no rule for the receptor recognition. CoVs from the 
same genera recognize different receptors, e.g., MERS-CoV 
and SARS-CoV belong to the β-genus, but their S1CTDs bind 

DPP4 and ACE-2, respectively [96, 97]. Moreover, some CoVs 
from different genera are able to recognize the same receptor, 
e.g. although NL63-CoV belongs to α-genus and SARS-CoV 
belongs to β-genus, both S1-CTDs bind ACE-2 [98, 99, 100, 
101, 102, 103, 104]. Finally, coronaviruses could use one or 
both S1 domains as RBDs, e.g., S1-CTD of TGEV-CoV binds 
APN, while its S1-NTD recognizes sugar [105].

It is well known that SARS-CoV mostly replicates 
in alveolar tissues, and is therefore commonly observed 
with pneumonia. On the other hand MERS-CoV has wide 
cellular tropism. It is able to replicate in both bronchial and 
alveolar tissue, and could therefore be the reason for such 
high mortality [106].

Coronavirus entry and entry into the host cell. After binding 
with specific receptors, enveloped viruses have the necessity 
to fuse with a host membrane, and subsequently deliver the 
viral genome to achieve successful infection. There are 2 main 
pathways. The first is pH-independent, based on genome 
delivery to the cytosol, and subsequently the fusion of their 
envelopes with the plasma membrane. However, many viruses 
use receptor-dependent endocytosis as a way of viral entry. In 
this process, virions are endocytosed and surrendered to the 
crucial step which takes place in the endosomes. Environmental 
cues, such as pH decrease, changing of the redox status and 
proteolytic activity, are necessary for inducing conformational 
changes in viral proteins, and subsequently lead to fusion 
of viral envelope and endosomal host membranes. Finally, 
the viral positive-strand RNA genome is released into the 
cytoplasm [107, 108, 109, 110].

Cellular endocitosis of viral entry could induce clathrin-
dependent, caveolae-dependent, clathrin-independent as 
well as caveolae-independent mechanisms [111, 112, 113]. 
SARS-CoV was at first thought to enter by direct fusion 
at the plasma membrane [114, 115, 116]. Further studies 
identified that low pH could have asignificant influence on 
this process [117], and an acid protease, cathepsin L could 
be involved [118, 116], which suggests that SARS-CoV could 
enter via endocytosis.

Many experiments have been carried out that have 
produced conflicting results. One of the most common 
pathways is the clathrin-dependent pasthway,based on 
viral entry and translocation into endosomes where they 
are degraded or recycled [119, 120]. This pathway starts from 
binding the adaptor protein 2 (AP2) to the cytoplasmic tail of 
the receptors using clathrins [121, 122]. The receptors are then 
invaginated to clathrin coated pits. Viruses connected with 
receptors are subsequently endocytosed and transported to 
early endosomes in a pH-dependent way. Low pH is necessary 
to mature vesicles to late endosomes, and subsequently set 
up an infection [111, 112]. Inoue at al. demonstrated that 
SARS-CoV binds ACE2 and penetrates endosomes in the 
clatrhrin-dependent mechanism. Spike protein is first cleaved 
into the S1 and S2 subdomains by cathepsin L. This process 
provides the fusion of the viral envelope and the membrane 
of the endosome. Clattern-coated pits are shaped because 
of the contact between the AP2 with the clathrin complex 
and ACE2 with the virus, which is finally translocated to 
edosomes. Uncoating of the virus is made by acid protease, 
e.g. cathepsin L [119].

Further studies demonstrated that there is also a caveolae-
dependent pathway. Caveolae are a flask-shaped type of lipid 
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rafts. These small invaginations of the plasma membrane 
are composed of cholesterol, glycophingolipids and caveolin 
[123]. Caveolin is able to oligomerize which leads to the 
formation of caveolin-rich microdomains in the plasma 
membrane, and subsequently to the endocytic vesicle. The 
released caveolar vesicle has gained the ability to fuse with 
the early endosomal compartment – caveosome or even 
endosome [124]. Choi at al. demonstrated on the MHV strain 
that lipid rafts must have been involved in virus entry to the 
host cell and also in cell-cell fusion [123], but to-date there 
is no data about the host lipid modulation by CoVs [125].

The current study concerned the inventory of pro- and anti-
viral host factors relevant for SARS-CoV replication. Using 
siRNA (small interfering RNAs), de Wilde et al. demonstrated 
that over 40 proteins, including molecules involved in lipid 
metabolism, promote SARS-CoV replication. They found 
that depletion of double-stranded RNA-activated protein 
kinase (PKR) promotes increased SARS-CoV protein 
expression. Moreover, cyclin-dependent kinase 6 (CDK6) 
was identified as a novel anti-viral host factor in SARS-CoV 
replication [126].

Wang at al. confirmed that CoVs could also infect cells 
in a clathrin- and caveolae-independent mechanism. This 
concerned especially CoVs that harbur a non-cleaved spike 
on their surface. Wang at al. discovered that SARS-CoV is 
able enter to cells by a pH-sensitive pathway in the absence 
of clathrin-mediated endocytosis [127]. Indeed, because 
of the low pH, SARS-CoV infection can be inhibited by 
lysomotropic agents [128]. Thus, SARS-CoV fusion could 
probably be triggered by proteolytic processing of the spike. It 
has been proved in vitro that SARS-CoV infection is enhanced 
by a diversity of proteins, such as elastase, thermolysin or 
trypsin [129], which trigger fusion by dual cleavage: between 
S1 and S2 together, as well as at the N-terminal of the fusion 
peptide [130, 131, 132].

Another research investigated the endo- and lysosomal 
pathway in a proteolysis-dependent manner. Using siRNA, 
the investigators demonstrated that strain A59 of MHV-CoV 
requires proteins for the maturation of the endosome, and 
its subsequent fusion with lysosome during cell infection. 
They confirmed that MHV entry is dependent upon clathrin-
mediated endocytosis by using replication-independent 
fusion assay and the MHV particles fuse in lysosomes. 
They hypothesized that the fusion site is determined by the 
proteolytic cleavage site, upstream of the FP in the spike 
protein [107].

Conducted studies demonstrated that viruses could use 
more than one pathway to enter into the host cell [133, 
134]. Over the years, coronaviruses have altered their S 
proteins, which leads to the variety of the fusion mechanisms 
depending on the strain. It remains unclear how CoVs choose 
the way of entry. After binding with a specific receptor, 
fusion might appear at the cell surface or after endocytosis. 
Preferred entry could also be dependent on the cell type and 
pH acidification.

Membrane rearrangements. During the infection in 
mammalian cells, coronaviruses rearrange cellular 
membranes into organelle-like replicative structures 
including double-membrane vesicles (DMVs) and convoluted 
membranes (CMs). DMVs range vary from 150–300 nm [135]. 
Nsp3, nsp4 and nsp6 are believed to structure the DMV 
formation and subsequently attach the RTC to intracellular 

membranes [17, 136, 137, 138]. RTC is constructed through 
the interplay of the 16 CoVs non-structural proteins and as 
well as the N protein [137].

Coronaviruses also induce a wide range of membrane 
structures, some of which are responsible for viral RNA 
synthesis, such as DMVs and CMs. DMVs are present in a 
very high proportion in the perinuclear region of cytoplasm. 
CMs are present between the clusters of DMVs [139, 140, 
141]. Many studies hale demonstrated that DMVs do not 
remain isolated vesicles, but an interconnected membranous 
network continuous with Endoplasmic Reticulum (ER) [139]. 
Electron tomography studies confirmed that those replicative 
structures are localized in MHV-CoV and SARS-CoVs nps. 
[136, 142, 139, 140, 143, 144]. However, CMs are more highly 
enriched in SARS-CoV nsps than DMVs [139]. Therefore, it 
is though that active replicase complex is localized to the 
CM [145].

Immunoelectron microscopy has shown that newly 
synthesized viral RNA was present near the replicative 
structures described above [146, 147]. Later, CoVs generate 
Large Virion-Containing Vesicles (LVCVs), Tubular Bodies 
(TBs) and also Cubic Membrane Structures (CMSs) [114, 139, 
140, 148]. Subsequently, at later stages of SARS-CoV infection, 
DMVs are believed to fuse into packets of single-membrane 
vesicles surrounded by a common outer membrane, and the 
clustered single DMVs slowly disappeared. Those Vesicle 
Packets (VPs) are quite large (1–5μm) and tend to include over 
25 inner vesicles [139, 148]. However, electron tomography 
has not revealed any connections between the interior of 
DMVs and the cytosol. This finding leads to the hypothesis 
that the replication carries out in DMVs until the network 
with the cytosol is maintained [145].

It remains unclear where nascent viral RNA synthesis 
take place. Although nps include DMVs and CMs, the 
connection with the cytoplasm has not yet been detected. 
The presence of viral enzymes involved in RNA synthesis is 
not equal to active RTCs. Sites of RNA synthesis certainly 
include RdRp, dsRNA, as well as nascent viral RNA. The 
latter has been visualized close to antibodies that recognize 
nsp5 and the C-terminal end of pp1a [147]. Further studies 
demonstrated that newly-synthesized coronaviral RNA were 
observed in MHV-infected cells in the vicinity of DMVs [149]. 
Furthermore, nascent viral RNA was also observed in close 
proximity to nsp12 that contains RdRp [135].

However, during later stages of CoVs infection, not all 
DMVs remain active and are not involved in RNA synthesis. 
Moreover, those which persist actively, frequently enclose 
small quantities of dsRNA. Another credible site for RNA 
synthesis seems to be CMs [135]. Therefore, further studies 
must be undertaken to accurately determine the localization 
of CoVs RNA synthesis, as well as the exact composition of 
the RTCs.

Reticulovesicular Network (RVN) is a part of a membrane 
associated with the virus replication. Many studies have 
suggested that ER could be involved in the biogenesis of 
this compartment [150, 151]. It has been shown that the 
Endoplasmic-Reticulum Associated protein Degradation 
(ERAD) is connected with CoVs replicative structures [152]. 
On the other hand, there are many membrane proteins, such 
as Sec13, Arf1, GBF1 or synaxin 5 that have not been detected 
in RVN, despite functioning downstream of the ER in the 
secretory pathway.
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Treatment of CoVs infections. Despite many scientific 
studies on human CoVs, there is currently no efficient therapy 
available. Commonly, patients are treated ineffectively with 
interferon or/and ribavirin [153, 154, 155, 156, 157]. The 
treatment with IFN alpha or lambda is only reasonable 
for the preventive treatment of exposed people. The rise of 
newer and more acute CoVs has emphasized the demand to 
develop effective therapeutic tools against CoVs. Therefore 
it highlights the need to discover an effective therapeutic 
tool against CoVs.

Over the years, e a wide range of molecules have been 
determined against coronaviruses, i.e. protease inhibitors 
[158, 159, 160]. Lundin at al. screened a collection of 1,6671 
varied compounds against human CoVs and identified 
an inhibitor, designated K22, which specifically targets 
membrane-bound RNA synthesis. It proved to be efficient 
in primary human epithelia cultures against a wide spectrum 
of human coronaviruses, including MERS. K22 expend the 
most effective antiviral activity at an early step of the viral 
life cycle [161].

The ideal target of vaccinology seems to be the accessibility 
of the conservation sequence of the fusion peptide at the 
periphery of the trimer [54]. Studies may be based on raising 
neutralizing antibodies of CoVs S proteins, which overlap 
with the fusion peptide [162]. Antigenic determinants that 
binds to this conserved site could block the insertion of 
the fusion peptide into target membrane, and also prevent 
conformational changes [54].

Sme trials conducted on Spike proteins have achieved in 
vivo a therapeutic threshold, i.e. against SARS [163] or MERS 
[164], which suggests that it might be possible to discover a 
vaccine against human CoVs.

CONCLUSIONS

Coronaviruses has the largest RNA plus strand genome 
which encodes a variety of RNA-modifying enzymes, often 
absent in most virus strains. Many studies hale demonstrated 
that the spike protein is the crucial molecule responsible 
for CoVs tropism and cell entry. Recent research has shown 
that modifications of the S protein could effect the viral 
pathogenicity. The development of host-directed antiviral 
therapy seems to be promising way to treat infections with 
SARS-CoV or other pathogenic coronaviruses. There is still 
much to be discovered in the inventory of pro- and antiviral 
host factors relevant for CoVs replication. Therefore, studies 
on coronaviruses have a significant impast on health and 
the economy. Further research on the interactions between 
coronaviruses proteins in viral replication may also be of 
appreciable importance.
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