INTRODUCTION

The European pigeon tick (*Argas reflexus*) is an element of the fauna of many European cities where it poses a major threat to public health [1–3]. The first information about the appearance of the European pigeon tick in residential buildings and human infestations dates back to the late 19th and early 20th centuries [4, 5]. Since then, similar cases have been reported from different countries, usually upon tick infestations of humans and development of symptoms of allergic reactions in response to the salivary components, which exhibit strong allergenic properties [6, 7]. To-date, the occurrence of *A. reflexus* has been confirmed in several cities in Poland (Fig. 1).

European pigeon ticks have been found near pigeons’ nesting sites in church towers as well as attics and lofts of buildings [8, 9], from where they entered areas inhabited by residents. The relatively small number of recorded pigeon tick attacks on man, in comparison with their high abundance in the habitats, may be related to the fact that allergic reactions developing in individuals bitten by *A. reflexus* can be erroneously assigned to other arthropods (e.g. bed bug *Cimex lectularius*, red mite *Dermanyssus gallinae* or chemical agents). In many cases, the cause of the skin lesions is unrecognised and the patient receives symptomatic treatment [10]. These difficulties are mainly related to the fact that pigeon ticks are not active during daytime. They attack the host only at night, and the stages that parasitize humans most frequently, i.e. nymphs and adults, feed for a short time – ca. 1.5–2 hours [11]. When engorged, they hide deep in wall and furniture cracks and slits; only hungry specimens leave the hiding place to find a new source of food. As shown by Boxler et al. [12], among the several stimuli relevant for ticks, e.g. living nestlings as well as begging calls, body heat, smell, host breath, and tick faeces, heat is the sole stimulus that plays an important role in host localisation by *A. reflexus*. The tick reacts to this stimulus at a distance of several centimetres.

Skin lesions in humans bitten by European pigeon tick *Argas reflexus* (Fab.) (Ixodidae: Argasidae) massively occurring in the Upper Silesian conurbation of south-west Poland

Alicja Buczek1,2,A,F, Katarzyna Bartosik1,2,A,C,F, Dorota Kulina2,3,B,D,F, Magdalena Raszewska-Famielec1,3,C,F, Adam Borzęcki1,3,C,F

1 Chair and Department of Biology and Parasitology, Medical University, Lublin, Poland
2 Department of Basic Nursing and Medical Teaching, Medical University, Lublin, Poland
3 Med-Laser Non-Public Health Care Centre, Lublin, Poland

A – Research concept and design; B – Collection and/or assembly of data; C – Data analysis and interpretation; D – Writing the article; E – Critical revision of the article; F – Final approval of article

Buczek A, Bartosik K, Kulina D, Raszewska-Famielec M, Borzęcki A. Skin lesions in humans bitten by European pigeon tick *Argas reflexus* (Fab.) (Ixodida: Argasidae) massively occurring in the Upper Silesian conurbation of south-west Poland. Ann Agric Environ Med. doi: 10.26444/aaem/74137

Key words

Public Health, skin lesions, urban environment, *Argas reflexus*, European pigeon tick, pests

www.aaem.pl

Annals of Agricultural and Environmental Medicine
A. reflexus is trophically associated with feral pigeons (Columba livia var. domestica), although it can search for other hosts in the absence of birds or at an increased density of ticks [9, 13–19]. Ticks leave pigeons’ nesting sites and enter flats through open windows, doors, ventilation systems, and cracks in the walls [20, 21]. Invasions of the European pigeon tick in flats are often noted after removal of pigeons from attics and during reconstruction of buildings or other construction work [4, 10, 19, 21, 23–29].

The great number of pigeons in the urban environments (e.g., cities, towns, docks, and others human developments) [30, 31] and the constant growth of their population supported by food availability and favourable nesting conditions in all seasons of the year, accompanied by the absence of food predators and microorganisms [32, 33], can promote expansion of the occurrence range of the European pigeon tick.

OBJECTIVES

The persistence of an abundant A. reflexus population in cities is also determined by the biological traits of the tick species. These include the ability to survive even in the extreme conditions or unavailability of hosts, foetal and extraembryonic development with utilisation of energy reserves accumulated by previous developmental stages, and high adaptability. Therefore, it is necessary to disseminate information on A. reflexus attacks in humans and reactions to tick bites, which can help to identify the causes of the disease symptoms in patients and alleviate the effects of parasitism of these soft ticks. The article presents the results of studies of the occurrence of A. reflexus in several cities of Upper Silesia, and the skin lesions caused by A. reflexus tick bites in humans.

MATERIALS AND METHOD

The study was carried out in 1995–2002 in five cities, Katowice, Bytom, Chorzów, Dąbrowa Górnicza and Świętochłowice, located in the Upper Silesian conurbation (southwestern Poland), which is composed of 19 bordering cities of the
Silesian Province with a total area of 12,333.09 km² and with 2,903,812 inhabitants [34].

A. reflexus ticks were collected during the day, mainly in wall cracks and slits in the wooden ceilings of attics (Fig. 2). Each time, ticks were collected for one hour. Specimens collected were placed in transport chambers and next viewed under a stereoscopic microscope in laboratory conditions. The species, stage of development, and gender of adult ticks were determined in accordance with the identification keys proposed by Siuda [17].

Simultaneously, the residents of the buildings were interviewed to obtain information on skin lesions appearing after a night’s sleep. To confirm the presence of pigeon ticks in the flats of the individuals reporting skin symptoms, cracks in the walls, furniture, and floor as well as other places that could be hides for the arthropods were carefully inspected. Photographic documentation was made of the residents’ skin lesions.

RESULTS AND DISCUSSION

Table 1 shows the results of the collection of *A. reflexus* ticks in selected localities in the Upper Silesian conurbation. A total of 987 *A. reflexus* specimens were collected: 334 females, 269 males, and 384 various nymphal instars (88 nymphs I and 296 other nymphal instars). During one hour, 38–109 *A. reflexus* specimens were collected in the attics of the residential buildings. In most cases, a few or several dozen nymphs and adults (females and males) of this species were found per one crack. The accumulation of *A. reflexus* individuals is caused by the activity of pheromones released by these ticks [35]. Adult stages dominated in the majority of the collection events. Females and males accounted for 33.8% and 27.2%, respectively, of all *A. reflexus* specimens collected during these investigations (Tab. 1). Older nymphal instars dominated among the nymphs. In this study, neither the number of nymphal instars in the Silesian *A. reflexus* population nor their morphometric characteristics were determined. A greater number of nymphs I than that of the other nymphal instars were noted only at the end of September. During the field study conducted in spring and autumn, no *A. reflexus* larvae were found in the wall cracks in the lofts of the buildings.

The structure of *A. reflexus* populations in different months of the year is related to the biology of this tick species. In spring, females usually oviposit after intake of pigeon’s blood. In the absence of a host, they can lay small egg batches utilising nutrient reserves accumulated during the feeding period before the onset of the diapause (autogenous egg development) [11]. The length of the preoviposition, oviposition, and embryogenesis increases with the decline in
numbers of pigeons inhabit old buildings located in cities and on window sills. As indicated by ornithological data, the greatest number of localities of the European pigeon tick has been reported from southern [e.g. 3, 24, 25, 41–44], western [e.g. 8, 26, 45, 46], and central [e.g. 9, 13, 30] Europe. Mayer [13] reported finding as many as 23,640 specimens of this tick species in one attic of a Berlin building, which had been a nesting site for approximately 100 pigeons. In 1982–1985, one of the authors of the presented study (AB) collected over 150 A. reflexus nymphs and adults stages in an area of approx. 12m² (6m × 2m) of cracks and patches of plasterwork falling from the attic walls of a 1910 neo-Baroque building in Katowice.

European pigeon tick specimens were also found in other localities in the area of the Upper Silesian conurbation (Fig. 1). The research indicates the presence of A. reflexus ticks in many downtown buildings inspected in this study. Their spread in this region of Poland is associated with the multigenerational tradition of breeding pigeons, which determines the length of the developmental period and the number of nymphal instars [9, 39]. As reported by Dautel and Knülle [39], in localities of A. reflexus in Berlin, nymphs II, nymphs I and larvae fed later than mid-July, August, or September, respectively. They enter the diapause when unfed. Field observations carried out by one researcher from our team (AB) in Upper Silesia indicate that nymphal instars and the adult stage of the pigeon tick usually survive the winter diapause period. However, it cannot be ruled out that larvae may have been present deep inside cracks that were not accessible during the study. In laboratory conditions, the potential of unengorged larvae to survive even for more than 100 days was confirmed.

The greater number of A. reflexus nymphs I in our autumn collections is associated with the presence of specimens moulted from larvae hatched from eggs oviposited by foraging females during the spring of the same year [11, 39]. The ticks found during collection were usually unengorged (Tab. 1). The highly flattened body and absence of food in the intestines of these specimens suggested a long starvation period. The presence of the great numbers and different developmental stages of A. reflexus in the lofts and attics of the inspected buildings suggested that the sites had been colonised by the ticks for a long time. Many pigeons were present inside the buildings, as well as on the roofs and window sills. As indicated by ornithological data, the greatest numbers of pigeons inhabit old buildings located in cities and lower numbers live in suburban and rural areas [40]. Both the number of pigeons and flocks, which are related to the occurrence of the European pigeon tick, as mentioned above, depend on the structure of buildings located in cities [40].

Field observations carried out by one researcher from our team (AB) in Upper Silesia indicate that nymphal instars and the adult stage of the pigeon tick usually survive the winter diapause period. However, it cannot be ruled out that larvae may have been present deep inside cracks that were not accessible during the study. In laboratory conditions, the potential of unengorged larvae to survive even for more than 100 days was confirmed.

The greater number of A. reflexus nymphs I in our autumn collections is associated with the presence of specimens moulted from larvae hatched from eggs oviposited by foraging females during the spring of the same year [11, 39]. The ticks found during collection were usually unengorged (Tab. 1). The highly flattened body and absence of food in the intestines of these specimens suggested a long starvation period. The presence of the great numbers and different developmental stages of A. reflexus in the lofts and attics of the inspected buildings suggested that the sites had been colonised by the ticks for a long time. Many pigeons were present inside the buildings, as well as on the roofs and window sills. As indicated by ornithological data, the greatest numbers of pigeons inhabit old buildings located in cities and lower numbers live in suburban and rural areas [40]. Both the number of pigeons and flocks, which are related to the occurrence of the European pigeon tick, as mentioned above, depend on the structure of buildings located in cities [40].

Field observations carried out by one researcher from our team (AB) in Upper Silesia indicate that nymphal instars and the adult stage of the pigeon tick usually survive the winter diapause period. However, it cannot be ruled out that larvae may have been present deep inside cracks that were not accessible during the study. In laboratory conditions, the potential of unengorged larvae to survive even for more than 100 days was confirmed.

Field observations carried out by one researcher from our team (AB) in Upper Silesia indicate that nymphal instars and the adult stage of the pigeon tick usually survive the winter diapause period. However, it cannot be ruled out that larvae may have been present deep inside cracks that were not accessible during the study. In laboratory conditions, the potential of unengorged larvae to survive even for more than 100 days was confirmed.

Field observations carried out by one researcher from our team (AB) in Upper Silesia indicate that nymphal instars and the adult stage of the pigeon tick usually survive the winter diapause period. However, it cannot be ruled out that larvae may have been present deep inside cracks that were not accessible during the study. In laboratory conditions, the potential of unengorged larvae to survive even for more than 100 days was confirmed.
probably started at the beginning of the 20th century and gained wide popularity after World War I when Silesians working in Westphalia (Germany), or served in the German army in Belgium and returned to Upper Silesia after the end of the war. They popularised pigeon breeding not only in dovecotes but also in the attics of residential buildings.

Besides the availability of hosts, the presence of \textit{A. reflexus} ticks in lofts and attics is supported by favourable thermal and humidity conditions, as confirmed by laboratory [11, 36, 47–49] and field studies [39, 50]. Oviposition and embryonic larval development in the Silesian \textit{A. reflexus} population take place at a temperature range of 20–30°C and 10–90% humidity, with optimal conditions of 20–25°C and 10–75% humidity [36]. Temperature fluctuations [37], low temperature [38], and high humidity [48] disturb the development of this species.

The \textit{A. reflexus} adults and nymphs were collected during their peak seasonal activity, which is noted as March – June [22, 24, 36, 51], and during autumn, when the activity of these stages in northern and central Europe is lower. The greatest number of \textit{A. reflexus} attacks on humans is recorded in spring when unengorged specimens leave their hiding places and start foraging [22, 46].

During the current study, skin lesions were reported by residents of Bytom, Chorzów, Dąbrowa Górnicza and Świętochłowice. In this period, no cases of tick attacks were reported from Katowice. This can be explained by the fact that the building of the Silesian University was the inspected locality, which was uninhabited during the time of the nocturnal activity of the species. However, skin lesions caused by an \textit{A. reflexus} bite and persistent swelling of the bitten area had been reported earlier by a man working in the evenings and at night in the University laboratory [10]. In turn, in the other \textit{A. reflexus} habitat in Katowice, pigeon ticks had permanent access to many pigeons in lofts; therefore, they did not forage in flats.

CASE REPORTS

Case 1. A female patient was attacked by pigeon ticks in her flat and it was possible to trace the development of skin lesions caused by the tick bites. The observations made and the patient’s history indicated slight inflammatory reactions appearing already in the morning, which intensified over subsequent days. A grey-purple rash formed at the bite sites. After 14 days, an intense inflammatory response to the tick bites was diagnosed. A purple papule appeared in the centre of the lesion. After the consecutive 76 days, a small ulceration with a slightly undermined edge developed (Fig. 3, 4). No microbiological analyses were carried out, which could have excluded bacterial superinfection of the skin damaged by the \textit{A. reflexus} chelicera and hypostome.

The patient claimed that she had also observed skin lesions resolving within one week in previous years. \textit{A. reflexus} ticks were found in the loft of the building and the patient’s apartment, which confirmed that the skin lesions were caused by their bites.

Case 2. Between March – July, a male patient was repeatedly infested by pigeon ticks during sleep, as indicated by post-inflammatory hyperpigmentation after earlier bites (Fig. 5) and information provided by the patient. Frequent attacks of the patient by these ticks were also noted during the presented study period. Multiple papules on an erythematous base developed at the bites on the lower extremities (Fig. 5, 6).

As in case 1, many \textit{A. reflexus} ticks were found in the building (attic and staircase), and in the patient’s flat.

The above two cases and the presented multi-year observations indicate that the skin lesions caused by
A. reflexus bites are similar, but their range, severity, and dynamics of development may differ between patients. In some patients, very severe immune reactions and/or bacterial superinfection at the A. reflexus feeding site can be followed by the development of scars. In the cases described in this study, the skin lesions persisted for a long time, which was probably associated with development of hypersensitivity to A. reflexus toxins in both patients.

Depending on the frequency and intensity of pigeon tick attacks and patients’ physiological condition, skin lesions caused by A. reflexus may resolve after several days [25] (own observations) or persist for either 2–3 weeks [52], or even 1.5 year after the bite [10, 53].

Local reactions induced by A. reflexus bites can be manifested by various symptoms, e.g. redness, itching, inflammatory node, enlargement and pain of lymph nodes, lymphatic secretions, wheal, pruritic secretion, lymphangitis, lymph node swelling, and vesicles [6, 19, 46, 53–56]. Laboratory tests have confirmed that A. reflexus bites cause IgE-mediated sensitizations and anaphylactic reactions in humans [7, 46, 57, 58]. Literature provides descriptions of cases of anaphylactic shock caused by the components of tick saliva [10, 41, 46, 56, 59], including a case of death of a man who was attacked four times by pigeon ticks [10]. In Upper Silesia, hypersensitivity in humans manifested by local or systemic allergic reactions developed in approximately 40% of subjects bitten by A. reflexus [7].

Systemic reactions to the components of A. reflexus saliva included urticaria, angioedema, vascular dysregulation, dyspnoea, unconsciousness, gastrointestinal symptoms (loss of appetite, nausea, vomiting, abdominal pain and diarrhoea, rectal tenesmus), rush and pruritus, and elevated body temperature [10, 24–26, 41, 53, 56, 60]. The infestation by A. reflexus is a stress-inducing factor [25] (own observations). In addition to skin lesions, both patients described in this study reported other symptoms caused by A. reflexus bites, e.g. itching, malaise, headaches, nausea, lack of appetite, and agitation.

Given the high risk posed to human health, the effects of pigeon tick bites arouse great interest among medical doctors and students, and prompt the necessity for developing efficient strategies for a reduction in the abundance of these ticks in the urban environments.

CONCLUSIONS

The European pigeon ticks A. reflexus are spread in the lofts and attics of old buildings located in the centre of cities of the Upper Silesian conurbation, which are the localities for pigeons, i.e. their hosts. In subjects repeatedly infested by the European pigeon tick, severe inflammatory reaction caused by tick saliva components and purple papules with necrosis in the centre of the lesion can develop. Strong immunological reactions to A. reflexus tick bites and/or bacterial superinfections of damaged skin may lead to the formation of scars, as well as skin hyperpigmentation. The severity of local symptoms in patients repeatedly attacked by pigeon ticks and the persistence of skin lesions produced by A. reflexus bites causing discomfort, necessitate the undertaking of measures to limit tick bite cases by developing efficient methods for control of the abundance of ticks and pigeons in residential buildings, and for a comprehensive educational campaign in the area of occurrence of these parasites.

Acknowledgement

The authors thank Ms. Krystyna Kubicka for her help in collecting research material.

REFERENCES

