Analysis of the association between rs12917707 and rs11864909 single nucleotide polymorphisms in the region of the uromodulin gene and chronic kidney disease – a family-based study

Joanna Żywiec1, Katarzyna Kiliś-Pstrusińska2, Maciej Tomaszewski3, Władysław Grzeszczak1

1 Department of Internal Medicine, Diabetology and Nephrology, School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia, Katowice, Poland
2 Department of Paediatric Nephrology, Wroclaw Medical University, Poland
3 Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom


Abstract
Chronic kidney disease (CKD) is an important challenge for healthcare systems worldwide because of its high prevalence and serious late complications. The results of recent studies suggest an association between CKD development and genetic variation within the uromodulin gene (UMOD). The aim of this study was to investigate associations between two common single nucleotide polymorphisms – rs12917707 and rs11864909, located in the region of UMOD and chronic renal disease. The study group consisted of 109 patients with chronic kidney disease, caused by chronic renal glomerulonephritis or chronic tubulointerstitial nephritis, and 109 pairs of their biological parents. Genotyping for rs12917707 and rs11864909 was carried out using the TaqMan Pre-designed SNP Genotyping Assay. In the transmission disequilibrium test, allele C of rs11864909 was preferentially transmitted from parents to the children with chronic tubulointerstitial nephritis. The rs12917707 was not associated with CKD. Neither of the investigated polymorphisms was associated with the progression of chronic kidney disease. The obtained results suggest an association of rs11864909 with chronic kidney disease secondary to chronic tubulointerstitial nephritis.

Key words
chronic kidney disease, genetic association, family-based study, UMOD polymorphism

INTRODUCTION
Epidemiological data unequivocally proves the importance of chronic kidney disease (CKD) as a public problem worldwide, and based on study population results, its prevalence is estimated at over 10% of the adult population in the USA, Europe and Asia [1,2]. Moreover, contemporary analyses project escalation of the prevalence and incidence of CKD in the future [3]. Both the ageing of populations and increasing incidence of metabolic disturbances are the drivers of the increasing burden of CKD [4]. CKD may lead to end stage renal disease that requires renal replacement therapy: dialysis or renal transplantation. As an independent risk factor for cardiovascular disease, chronic kidney disease causes increased morbidity and mortality; therefore, CKD is not only a medical issue but also an economic problem for healthcare worldwide [1]. There is a strong genetic component in CKD [5] which, apart from genes, demographic and environmental factors (age, gender, socioeconomic conditions, educational background), are important risk factors for CKD [4].

The results of genetic studies show the significant association of many genes and their polymorphisms with CKD development [5, 6], one of which is the uromodulin gene (UMOD). Uromodulin is selectively synthetized by epithelial cells of thick ascending limb of Henle’s loop, and in physiological conditions excreted mainly into the urine. Its important role in renal homeostasis has been firmly proved [7]. Uromodulin acts both within the renal tubules as well as renal interstitium. Excreted by the apical tubular cell membrane into the urine, it acts as the local protector and interacts with microbes, ions, mineral molecules, and others. Uromodulin crossing the basolateral surface of the tubular cell membrane translocates into the renal interstitium where it contributes to the regulation of inflammation. Although uromodulin urinary excretion and expression of its gene have been extensively studied in various pathophysiological states, its role is still unclear [8, 9].

The results of a genome-wide association study (GWAS), showed association between UMOD single nucleotide polymorphisms and both renal function as well as susceptibility to chronic kidney disease [6, 10].

OBJECTIVE
The aim of this study was to investigate associations between two common single nucleotide polymorphisms: rs12917707 and rs11864909 (located in UMOD locus) and chronic kidney disease in the Polish population.
MATERIALS AND METHOD

The study was conducted in the Department of Internal Medicine, Diabetology and Nephrology, at the Medical University of Silesia in Zabrze. The study group was recruited from CKD patients in dialysis units and outpatient nephrology clinics. The protocol of the investigation was approved by the Ethics Committee of the Medical University of Silesia and all participants (or their legal guardians in the cases of patients under the age 16) gave written consent for the study procedures. For the purpose of the study, the family-based model of genetic association was chosen, and CKD patients and their biological parents were invited to provide blood sample for genetic analysis.

The genomic DNA was isolated from peripheral blood leukocytes with a DNA isolation kit (Epicenter Technologies Corp., Madison, Wisconsin, USA) in an own laboratory modification. Genotyping of single nucleotide polymorphisms rs7456421 and rs 2030712 was performed with TaqMan Pre-designed SNP Genotyping Assay (Applied Biosystems Inc., Foster City, California, USA) using 7300 Real Time PCR of the Applied Biosystems Company.

109 patients with chronic kidney disease and 109 pairs of their biological parents, a total of 109 ‘family trios’ were investigated.

The CKD group consisted of 48 (44%) females and 61 (56%) males; mean age – 15.5 (±6.45) years; body mass index calculated at 19.1 (±3.5) kg/m². The results of a prior kidney biopsy was used for classification into two categories: chronic glomerulonephritis – 27.5%, and chronic tubulointerstitial nephritis – 72.5% of cases. Within the CIN group, 62 patients were diagnosed with congenital urinary tract defects. During the study, the mean value of glomerular filtration rate (GFR), estimated for all CKD patients on the basis of MDRD (Modification of Diet in Renal Disease) or Schwartz formulas, was 28.2 ml/min. 46.8% of CKD patients with mean values of serum creatinine 2.77 (±1.0) mg/dl and estimated GFR (eGFR) 36.0 (±15.2) ml/min were conservatively treated. The group undergoing renal replacement therapy consisted of 58 patients: 33 individuals (56.9%) were treated with continuous ambulatory peritoneal dialysis (CAPD), 17 (29.3%) – haemodialysis, and 8 (13.8%) underwent successful renal transplantation. The mean values of serum creatinine and eGFR in these subgroups were, respectively: 6.78 (±2.7) mg/dl and 12.49 (±4.17) ml/min, 7.93 (±2.42) mg/dl and 12.04 (±3.45) ml/min, 1.08 (±0.13) mg/dl and 80.5 (±13.4) ml/min. Each patients’ medical history allowed characterisation of the progress of the CKD. The mean observation time for all patients was 28.2 (±6.45) years; body mass index calculated at 19.1 (±3.5) kg/m². Rapid CKD progression was defined as necessity for replacement therapy within a 5-year observation period from stage 2 CKD, and/or with doubled serum creatinine concentration, where the index I/ serum creatinine concentration was below 0.3. 49.5% of the patients were counted into this group.

Statistical analysis. Statistical analysis was performed on Microsoft Office Excel 2003, Statistica 7 and SAS software packages.

Depending on distribution, all data were presented as mean values with standard deviations or median values with upper and lower quartile. The Mann-Whitney Test was used for ascertainment of statistical differences among subgroups with p value <0.05.

Statistical analysis was performed for all those studied in the CKD group, and independently for two subgroups according to CKD ethiology: patients with chronic glomerulonephritis (CGN) and patients with chronic tubulointerstitial nephritis (CIN).

Using the transmission disequilibrium test (TDT), the allele transfer from parents to their affected offspring with CKD was estimated. In the case of both parents being homozygotes, the family was excluded from further analysis as non-informative.

Multiple linear regression analysis was used to identify potential demographic, clinical and genetic predictors of chronic kidney disease progression.

RESULTS

Genotype distribution of investigated polymorphisms are presented in Table 1; Tables 2 and 3 include corresponding TDT results.

Single nucleotide polymorphism rs12917707. The distribution of genotypes in the group of all patients with chronic renal disease was as follow: GT – 28.4%, GG – 70.6%, TT – 0.9%. The T was a minor allele (MAF = 0.15). Genotype distribution was similar in all study subgroups (Tab. 1).

Table 1. Distribution of rs12917707 and rs11864909 genotype in study groups [%]

<table>
<thead>
<tr>
<th>rs12917707</th>
<th>rs11864909</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allele G transmitted</td>
<td>Allele T transmitted</td>
</tr>
<tr>
<td>Allele observed/ expected</td>
<td>Allele observed/ expected</td>
</tr>
<tr>
<td>CKD</td>
<td>70.6</td>
</tr>
<tr>
<td>CGN</td>
<td>70.9</td>
</tr>
<tr>
<td>CIN</td>
<td>70.0</td>
</tr>
</tbody>
</table>

Based on TDT results, no association was fund between rs12917707 and CKD (Tab. 2).

Single nucleotide polymorphism rs11864909. In all CKD patients, the CT genotype was observed in 42.2%, while CC in 54.1% and TT in 3.7%. Allele T has minor frequency of 25% (MAF = 0.25). There were significant differences in genotype distribution of rs11864909 in subgroups with different CKD aetiology (Tab. 1).

The TDT results revealed association between the C allele and CKD in patients with chronic tubulointerstitial nephritis, but not those with chronic glomerulonephritis (Tab. 3). There was borderline association (p=0.07) between rs11864909 and CKD in the whole study group (Tab. 3).
The obtained results suggest the association of rs11864909 single nucleotide polymorphism with chronic kidney dysfunction, related to chronic tubulointerstitial nephritis. The allele C seems to be a risk factor for chronic kidney disease prevalence in this group of patients.

The limitation of this research was the relatively small study population, restricted mainly by problems with family recruitment. It seems valuable to conduct a broader survey in this area in the future.

Acknowledgement
The study was supported by Grant No. KNW-1-064/P1/0 from the Medical University of Silesia in Katowice, Poland.

REFERENCES