Pantoea agglomerans: a mysterious bacterium of evil and good. Part III. Deleterious effects: infections of humans, animals and plants

Jacek Dutkiewicz¹, Barbara Mackiewicz², Marta Kinga Lemieszek³, Marcin Golec¹, Janusz Milanowski²

¹ Department of Biological Health Hazards and Parasitology, Institute of Rural Health, Lublin, Poland
² Department of Pneumonology, Oncology and Allergology, Medical University, Lublin, Poland
³ Department of Medical Biology, Institute of Rural Health, Lublin, Poland

Abstract

Pantoea agglomerans, a bacterium associated with plants, is not an obligate infectious agent in humans. However, it could be a cause of opportunistic human infections, mostly by wound infection with plant material, or as a hospital-acquired infection, mostly in immunocompromised individuals. Wound infection with P. agglomerans usually follow piercing or laceration of skin with a plant thorn, wooden splinter or other plant material and subsequent inoculation of the plant-residing bacteria, mostly during performing of agricultural occupations and gardening, or children playing. Septic arthritis or synovitis appears as a common clinical outcome of exogenous infection with P. agglomerans, others include endophthalmitis, periostitis, endocarditis and osteomyelitis. Another major reason for clinical infection with P. agglomerans is exposure of hospitalized, often immunodeficient individuals to medical equipment or fluids contaminated with this bacterium. Epidemics of nosocomial septicemia with fatal cases have been described in several countries, both in adult and paediatric patients. In most cases, however, the clinical course of the hospital-acquired disease was mild and application of the proper antibiotic treatment led to full recovery. Compared to humans, there are only few reports on infectious diseases caused by Pantoea agglomerans in vertebrate animals. This species has been identified as a possible cause of equine abortion and placentitis and a haemorrhagic disease in dolphin fish (Coryphaena hippurus). P. agglomerans strains occur commonly, usually as symbionts, in insects and other arthropods. Pantoea agglomerans usually occurs in plants as an epi- or endophytic symbiont, often as mutualist. Nevertheless, this species has also also been identified as a cause of diseases in a range of cultivable plants, such as cotton, sweet onion, rice, maize, sorghum, bamboo, walnut, an ornamental plant called Chinese taro (Alocasia cucullata), and a grass called onion couch (Arrenatherum elatius). Some plant-pathogenic strains of P. agglomerans are tumourigenic, inducing gall formation on table beet, an ornamental plant gypsophila (Gypsophila paniculata), wisteria, Douglas-fir and cranberry. Recently, a Pantoea species closely related to P. agglomerans has been identified as a cause of bacterial blight disease in the edible mushroom Pleurotus erinaceus cultivated in China. The genetically governed determinants of plant pathogenicity in Pantoea agglomerans include such mechanisms as the hypersensitive response and pathogenicity (hpa) system, phytohormones, the quorum-sensing (QS) feedback system and type III secretion system (T3SS) injecting the effector proteins into the cytosol of a plant cell.

Key words

Pantoea agglomerans, infections, humans, vertebrate animals, arthropods, plant pathogen, genetic determinants

Causative agent of opportunistic infections in humans

Pantoea agglomerans is not an obligate infectious agent in humans. However, it could be a cause of the opportunistic (occasional) human infections, mostly in 2 situations: 1) wound infection with plant material, and 2) hospital-acquired infection. Cases which do not fall into these 2 categories are less numerous.

Wound infection with P. agglomerans could follow piercing or laceration of skin with a plant thorn, wooden splinter or other plant material, usually during performing of agricultural occupations [1, 2], during gardening [3, 4, 5, 6] or children playing [7, 8, 9, 10, 11, 12, 13], and subsequent inoculation of the plant-residing bacteria. Recently, Vaiman et al. [14] found in a retrospective study that all 9 patients with 1–2 months of ineffective treatment of post-traumatic wounds showed the presence of foreign bodies of plant origin infected with Pantoea agglomerans. Removal of the foreign bodies led to rapid healing of the wounds in 2–3 days. Septic arthritis or synovitis appears as a common clinical outcome of exogenous infection with P. agglomerans (Figs. 1–2) [4, 5, 7, 9, 10, 11, 12, 13], others include endophthalmitis [3, 6, 15, 16], acute unilateral dacryocystitis, peculiar by the kind of eye contaminant – not a plant material but dog feces [17], corneal infiltrate in an agricultural worker after rice husk injury, caused by Pantoea ananatis, a species closely related to P. agglomerans [18], periostitis [8], endocarditis [19], osteomyelitis after injury with rose thorn [20] or after closed fracture [21], tibial osteitis after an open grade IIIIB tibial shaft fracture [22], and a tumour-like muscle cyst of the thigh [2].

Exposure of hospitalized, often immunocompromised individuals, to medical equipment or fluids contaminated with
in patients seen at a children’s hospital in Houston, USA, over 6 years. Isolates included 23 from the bloodstream, 14 from abscesses, 10 from joints/bones, 4 from the urinary tract, and 1 each from the peritoneum and the thorax. Infections were mostly polymicrobial, mortality equaled to 5.7%. *P. agglomerans* was most associated with penetrating trauma by vegetative material and catheter-related bacteraemia.

The other cases of hospital-acquired *P. agglomerans* infection with identified source of contamination include: pneumonia in a heart-lung transplant recipient following transplantation (Fig. 3) [26], a ventilator-associated pneumonia in a patient with chronic renal failure [32], septicaemia after blood transfusion [27], septicaemia in oncologic patients due to infected catheters [33], and endocarditis in a patient with mitral valve leaflet prolapse [34].

P. agglomerans [23, 24, 25, 26, 27, 28] is another major reason for clinical infections with this bacterium. The greatest nosocomial (hospital-borne) epidemic caused by *P. agglomerans* and other enterobacteria, which occurred in the USA between 1970–1971 and resulted in 378 cases of septicaemia (of which 152 caused solely by *P. agglomerans*) with 13.4% mortality, was proved to have been spread by the factory-contaminated screw-caps of bottles with intravenous fluids [23]. Contamination of the screw-caps of the bottles containing the intravenous fluid with *P. agglomerans* and *Enterobacter cloacae* also caused the epidemic of nosocomial sepsis with 6.3% mortality among 63 Greek infants and children [24]. More recently, there was described in Malaysia an outbreak of septicemia with respiratory failure, with a very high mortality (87.5%) among neonates in an intensive care unit caused by parenteral nutrition solutions infected with *Pantoea* spp. [25, 29]. Bicudo et al. [30] described a nosocomial outbreak of *P. agglomerans* sepsis with gastrointestinal symptoms in 6 paediatric patients in Brazil, caused by contaminated transference tube used for intravenous rehydration. Boszczowski et al. [28], also in Brazil, reported an outbreak of *P. agglomerans* bacteraemia in 7 patients receiving haemodialysis or plasmapheresis, caused by contamination of an anticoagulant citrate-dextrose 46% solution produced by the hospital’s compound pharmacy. Cruz et al. [31] described 53 paediatric cases of *Pantoea agglomerans* infections cultured from normally sterile sites

Some infections with *P. agglomerans* associated with the stay in hospital cannot be traced to any documented way of infection and are defined as ‘endogenous’, ‘spontaneous’ or ‘sporadic’ infections. They are presumably due to the decline
of patients’ immunity caused by underlying disease and/or hospital procedures [35, 36, 37, 38]. Thus, Bergman et al. [35] reported 125 infections with \textit{P. agglomerans} among 6,383 newborns hospitalized in an intensive care unit, of whom 3 developed ‘sporadic’ septicaemia and died. In contrast, Aly et al. [36] described 5 cases of ‘sporadic’ septicaemia in preterm neonates with favourable outcome due to a proper antibiotic therapy. Cases of such \textit{P. agglomerans} septicaemias were described in a child with rotavirus gastroenteritis [39] and in an adult patient with colon cancer [40]. Cheng et al. [38] reported that at the large medical centre in Taiwan, the diagnosis of ‘spontaneous’ \textit{P. agglomerans} bacteraemia could be established between the years 2000–2010 in 18 adult patients, and was significantly associated with gastroesophageal reflux disease and receipt of antacids.

Liiberto et al. [41] reported an outbreak of \textit{P. agglomerans} septicaemia among the adult oncologic patients of a teaching hospital with undetermined source of infection. In other adult patients, Wang and Fraser [42] isolated \textit{P. agglomerans} from brain abscess that developed after infarction and hemicraniectomy, while Hischebeth et al. [43] identified \textit{P. agglomerans} as a cause of an acute hip prosthetic joint infection. Seok et al. [44] described a case of bilateral endogenous endophthalmitis caused by \textit{Pantoea agglomerans} in a patient who had interstitial lung disease and was treated with oral corticosteroids (Figs. 4–5), whereas Kletke et al. [45] reported unilateral endogenous endophthalmitis elicited by this bacterium in an otherwise healthy male. In another study, Flores Popoca et al. [46] demonstrated that \textit{Pantoea agglomerans} strains prevailed among bacteria isolated from the sputa of immunodeficient patients with different respiratory diseases, which indicates the potential role of this species as a possible secondary pathogen.

\textit{Pantoea agglomerans} seems to be a relatively common cause of peritonitis in the adult patients with renal failure receiving peritoneal dialysis [37, 47, 48, 49, 50, 51]. In 2 cases the injury with a rose thorn was suspected as the cause of infection [47, 49], and in 1 case a contaminated catheter caused the disease [51]; in all the other cases the source of infection in the patients receiving dialysis remained obscure [37, 48, 50].

Naha et al. [52] reported an interesting case of septicaemia caused by \textit{P. agglomerans} in an immunocompetent Indian farmer with no history of wounding. In spite of this, the authors postulate the occupational background of the disease and suggest that severe infections with \textit{P. agglomerans} may become increasingly frequent in the agricultural populations. A similar case of infectious pneumonia caused by \textit{P. agglomerans} in an otherwise healthy man has been described by Garcia-Pardo et al. [53]. In contrast, Al-Damluji et al. [54], who described earlier a lethal case of primary pneumonia caused by \textit{P. agglomerans} in a carpenter (Fig. 6), did not presume any association of the disease with occupation. It must be underscored, however, that despite a large respiratory exposure to \textit{P. agglomerans} in many agricultural occupations [55], the numbers of occupational infections with this bacterium are extremely low. Porter and Wray [56] presented another interesting case of \textit{P. agglomerans} infection in an immunocompetent, young British farmer which appeared as spondylodiscitis, a condition not previously associated with this bacterium. Although also in this case an occupational background could be suspected, the authors presumed that the infection could be rather an unwanted complication of tetracycline therapy. Rodrigues et al. [57] and Fullerton et al. [58] described cases of liver abscesses caused by \textit{P. agglomerans} (Fig. 7), the latter complicated by acute myositis leading to rhabdomyolysis and renal failure. In a study by Gonçalves et al. [59] \textit{Pantoea agglomerans} has been identified as a permanent constituent of
microbiota in chronic periodontitis lesions, posing a risk of systemic infections particularly in immunocompromised and hospitalized hosts.

In conclusion, the infections caused by *P. agglomerans* reveal a diverse clinical picture and have an opportunistic character, occurring mostly in immunocompromised persons. In the majority of cases, the clinical course of the disease is mild and application of the proper antibiotic treatment leads to full recovery [37, 38]. This underscores the need to consider *P. agglomerans* as a possible causative factor of various atypical infections, mostly those hospital-acquired or preceded by injury with plant material.

Causative agent of infections in animals

Compared to humans, there are only few reports on infections caused by *Pantoea agglomerans* in vertebrate animals. Gibson et al. [60] has identified *P. agglomerans* as a possible cause of equine abortion on the basis of positive cultures from aborted foetuses and/or foetal membranes associated with the presence of inflammatory lesions, mostly appearing as interstitial pneumonia, which had been evidenced by histopathological examination. Considering the known affinity of *P. agglomerans* to mammalian macrophages [55], the electron micrograph reproduced by authors is very meaningful, showing numerous bacteria engulfed within a cytoplasmic vacuole of an alveolar macrophage of aborted foetus (Fig. 8). Hong et al. [61] identified *P. agglomerans* as one of the causative agents of equine placentitis; however, its prevalence in the placentas from aborted, stillborn, and premature foals examined by these authors was smaller compared to other bacterial and fungal pathogens.

Pantoea agglomerans has been identified by Pomorski et al. [55, 62] as a potential cause of allergic pulmonary diseases in cows; however, to the best of our knowledge, no infectious diseases evoked by this bacterium were described until recently in these animals. Verdier-Metz et al. [63] isolated *P. agglomerans* and *Pantoea* sp. from the teat skin of healthy cows, without any pathologic changes.

Little is known about the occurrence of *P. agglomerans* in birds. Kisková et al. [64] reported a common occurrence of this species in the digestive tract of dunnocks (*Prunella modularis*) in Slovakia. *P. agglomerans* was found to occur also in fishes. It was isolated by Hansen et al. [65] from the kidney of a dolphin fish (*Coryphaena hippurus*), and identified as the cause of a haemorrhagic disease in this species, leading to marked economic losses. The bacterium was also isolated from brown and rainbow trout [66, 67], but in these cases it seems to have played a positive role, as a potential antagonist of the pathogen *Saprolegnia parasitica*.

Pantoea agglomerans strains occur commonly – usually as symbionts – in arthropods, mostly insects [68]. Among others, they were found to be associated with social insects, such as bees [69, 70], ants [71], and termites [72]. N₂-fixing *P. agglomerans* strains found in the guts of wood-eating termites were identified as a potential source of nitrogen for these insects [72]. So far, much attention has been paid to the occurrence of *P. agglomerans* in insect vectors of plant, animal and human diseases [73, 74], which will be discussed in detail later in this article and in the next article describing the beneficial effects of *P. agglomerans*. *Pantoea agglomerans* occurs commonly as a mutualist (in this form of symbiosis benefit both organisms: bacterium as well as insect host) in the gut of locusts (*Schistocerca gregaria*), and is probably involved in the synthesis of an insect cohesion pheromone which increases the risk of swarming and locust plague [75]. Apart from insects, *P. agglomerans* has also been isolated from the representatives of other arthropod taxa, such as ticks *Dermacentor reticulatus* (class Arachnida) [76], crabs *Ucides cordatus* (subphylum Crustacea) [77], and millipedes *Cylindroiulus caeruleocinctus* and *Ommatoiulus sabulosus* (class Diplopoda) [78]. Much less is known about the occurrence of *P. agglomerans* in invertebrates other than arthropods; Nadarasa and Stavrinides [79] reported the isolation of this bacterium from a slug (shell-less gastropod mollusc) in Canada.

Plant and mushroom pathogen

Pantoea agglomerans usually occurs in plants as an epi- or endophytic symbiont, often as mutualist. Nevertheless, this species has also been identified as a cause of plant diseases,
such as opportunistic bacterial seed and boll rot of cotton (*Gossypium hirsutum*) grown in the field (Fig. 9) [80]. The disease has been reported to be responsible for losses of 10–15% of cotton yield in the south-eastern US Cotton Belt. Pathogenic bacteria could be transmitted into cotton bolls by the southern green stink bug (*Nezara viridula*; Heteroptera: Pentatomidae) (Fig. 10) [73]. *P. agglomerans* and *P. ananatis* cause another plant disease: a centre rot of sweet onion (*Allium cepa*). Also in this case, the pathogens were transmitted by insect vectors, namely the onion thrips (*Thrips tabaci*; Thysanoptera: Thripidae) [81]. *P. agglomerans* was also shown to cause diseases of other plants, such as: • bacterial damage to the various organs of grass species, including pest species called couch grass (*Elytrigia repens*), and cultivable grass called onion couch (*Arrhenatherum elatius*) [82]; • black spot necrosis of the leaves of beach pea (*Lathyrus maritimus*) growing on the shorelines of Newfoundland, Canada [83]; • bacterial spot disease of Chinese taro (*Alocasia cucullata*), an ornamental species commonly cultivated in Brazil [84]; • red and yellow bacterial leaf tip and apical necrosis of *Pantoea ananatis* on *Arrhenatherum* and *Elytrigia repens* in Mexico [87]; • leaf blight disease of Chinese taro (*Alocasia cucullata*) [88]. *P. agglomerans* has been originally described by Kim et al. [89] as a cause of the brown discoloration of the inner glume (palea) of rice; however, subsequent investigations [90, 91] shown that the true disease agent was *Pantoea ananatis*, a related species.

Some plant-pathogenic strains of *P. agglomerans* are tumourigenic, inducing gall formation on *gypsophila*, beet, *wisteria*, Douglas-fir and cranberry [92, 93]. The best known are strains *P. agglomerans* pv. (*pathovar*) *gypsophilae* forming galls on the ornamental plant *gypsophila* (*Gypsophila paniculata*) and *P. agglomerans* pv. *betae*, which incites galls on both table beet (*Beta vulgaris*) and *gypsophila* (Fig. 11). Both these pathovars are supposed to evolve from symbionts to pathogens, and complex determinants of their pathogenicity were intensively studied by a group of Israeli scientists [93, 94, 95, 96, 97]. They showed that *P. agglomerans* was transformed into a host-specific tumourigenic pathogen by acquiring a 150 kb pPATH plasmid containing a pathogenicity island [95]. Gall formation by *P. agglomerans* pv. *gypsophilae* is controlled by the hypersensitive response and pathogenicity (*hrp*) system, phytohormones, and the quorum-sensing (QS) system [94, 96, 97]. QS is a feedback system regulating life functions of bacteria and interrelations between bacterium and host, depending on the density of bacterial colonizer, which is steered by a diffusible signal molecule targeting various functions, usually Acyl-homoserine lactone (AHL) [94]. The major role of the QS system in governing the colonization of maize by *Pantoea stewartii* subsup. *stewartii*, the species related to *P. agglomerans*, was evidenced by Koutsoudis et al. [98].

Interesting multispecies interactions were recently described by Buonaurio et al. [99] who noted that *P. agglomerans* strains which normally exist in olive trees as harmless endophytes, may cooperate with the bacterial pathogen *Pseudomonas savastanoi* pv. *savastanoi*, causing the olive knot disease by the formation of stable bacterial consortia and exchange of QS signals, which increases the severity of the disease. *Pantoea* strains may be also pathogenic for mushrooms. Ma et al. [100] have identified *Pantoea* as a cause of bacterial blight disease in the edible mushroom *Pleurotus eryngii* cultivated in Beijing, China. The pathogenic isolates were initially determined as close to *P. agglomerans*, but a more detailed genetic examination enabled the authors to classify them as belonging to a novel species, described as *Pantoea pleurotii*.
Ice nucleation activity

Pantoea agglomerans, together with *Pseudomonas syringae* and *Pseudomonas fluorescens*, reveals unique ice nucleation activity, e.g. creating the structures called ice nuclei that initiate the formation of the tissue-destructing ice crystals on the surface of plants, leading to frost injury of plants at temperatures at which such injury normally does not occur (usually between -2°C – -5°C) [101, 102]. In the experiments performed by Lindow et al. [101], different plants (tobacco, bean, lettuce, marigold, eggplant, sunflower, tomato, zinnia, pumpkin, cucumber) sprayed with a suspension of *P. agglomerans* were almost completely killed after freezing at -5°C, while no damage to plants sprayed with the buffer alone was observed. Kim et al. [89] observed that the *P. agglomerans* strain pathogenic for rice (which probably should be reclassified as belonging to the closely-related species *P. ananatis*) had a high ice nucleation activity. Corn seedlings sprayed with the cell suspension of this strain were frost-damaged already at excessively high temperatures ranging from -1°C to -2°C. It has been found that the ice nuclei produced by *P. agglomerans* are shed from the outer membrane of bacteria in the form of protein-containing vesicles measuring 50–300 nm [102, 103], that resemble structures described by us as endotoxin-containing vesicles [55, 104].

Determinants of pathogenicity and of other traits of *Pantoea agglomerans*

The genomes of 7 *P. agglomerans* strains isolated from various sources and showing various properties, both pathogenic and beneficial, were sequenced and published [105, 106, 107, 108, 109, 110, 111]. The sizes of the genomes and their G+C contents were within fairly narrow ranges 4.58–5.00 Mb and 54.3–55.05%, respectively. The availability of these genomes, as well as the genomes from the other species belonging to genus *Pantoea*, has contributed to a better understanding of the host colonizing and metabolic properties, as well as the underlying genetic and physiologic mechanisms revealed by the strains belonging to this highly versatile genus [68]. Considering this versatility, Walterson and Stavrinides [68] expressed an opinion that these mechanisms have only been partly explored, and their complete characteristics, enabling full knowledge of the pathogenic and beneficial traits of *Pantoea*, might be possible after the description of more genomes extracted from various strains of this genus.

A large number of new species belonging to *Pantoea* genus was recently described and there is a possibility that some *P. agglomerans* strains identified in the past as inducers of human, animal or plant diseases could now be classified within new taxa [68, 79, 112]. Hence, it would probably be safer in some cases to define the described infectious diseases as caused by bacteria belonging the *Pantoea agglomerans* complex. Nevertheless, in the light of the studies by Delétoile et al. [113], Völksch et al. [114], and a recent experimental study by Nadarasah and Stavriniades [79] who examined the development of 115 *Pantoea* strains isolated from various sources in the plant and animal hosts, the classification of a *Pantoea* strain within a given species does not necessarily predetermine its specific pathogenicity, as the strains belonging to this genus show a broad host range resulting in capability of plant isolates to infect animals and vice versa.

Genes encoding proteins determining pathogenicity and other traits of *Pantoea agglomerans* and other species of *Pantoea* genus are often located in plasmids, such as the above-mentioned 150 kb pPATH plasmid of *P. agglomerans* containing a pathogenicity island determining tumour formation on plants [95]. De Maayer et al. [115] described the Large *Pantoea* Plasmid (LPP-1) that is common for all *Pantoea* species identified to date, and determines the basic life functions of the bacterium, such as transport and catabolism of various substrates, inorganic ion assimilation, resistance to antibiotics and heavy metals, colonization and persistence in the host and environment, pathogenesis and antibiosis. LPP-1 directs also the diversification of these functions, depending on the *Pantoea* strain and species. The authors expressed an opinion that the LPP-1 encodes proteins responsible for adaptation of particular *Pantoea* strains to various ecological niches and for many of their functions which could be classified from the human viewpoint both as deleterious (pathogenicity for plants, animals and humans) and beneficial (plant-growth promoting, antibiotic production, biocontrol of plant pests, environment remediation) [115]. In some cases, certain pathogenic properties of *Pantoea* strains, such as an interaction with a specific host, could be directed by genetic entities much smaller than plasmids or pathogenicity genomic islands. An example could be *P. agglomerans* T3SEs effector proteins of the type III secretion system which are encoded by genome regions, the nucleotide sequences smaller than the gene [116, 117].

The type III secretion system (T3SS) is one of the important determinants of pathogenicity. This is an extracellular apparatus used by many Gram-negative bacteria to deliver effector proteins (T3SEs) with the use of needle-like injectisomes or pili directly into the cytosol of plant and animal cells in order to modulate host cell defences, enabling successful pathogen colonization and growth [117, 118, 119]. The presence of T3SS has been detected in the *Pantoea* species, including *P. agglomerans* [116, 117] and related species *Pantoea stewartii* subsp. *stewartii*, the causative agent of Stewart’s bacterial wilt and leaf blight of maize [118]. Correa et al. [118] demonstrated that the latter species uses 2 T3SS systems, denoted as PSI-1 (*Pantoea* secretion island – 1) and PSI-2, the first for successful colonization of maize and the second for colonization of the flea beetle vector (*Chaetocnema pulicaria*). Kirzinger et al. [119] discovered in *Pantoea stewartii* subsp. *stewartii* the presence of a third T3SS system, similar to that present in *Salmonella*, which they called PSI-3. The authors expressed an opinion that whereas PSI-1 and to a lesser extent PSI-2, is inherited vertically by evolutionary processes, the PSI-3 is acquired by *Pantoea* species horizontally, by contemporary genetic exchange with other members of the Enterobacteriaceae, including genera whose members are known human pathogens, such as *Salmonella* and *Yersinia*. This could explain, at least in part, the ability of the particular *Pantoea* strains to infect humans and vertebrate animals.

Concluding remarks

Pantoea agglomerans appears to be a relatively well-known causative agent of the opportunistic human infections, mostly in immunocompromised individuals. Nevertheless, although the exact data were unless recently unknown, the prevalence of these infections is presumably lower compared...
to the cases of allergic and/or immunotoxic disorders caused by this bacterium. The latter are much less explored on the world scale, but most probably pose more important medical problems, especially with relation to occupational health [55, 120].

P. agglomerans is widespread among invertebrate and vertebrate animals, but its clinical significance in domestic and farm animals is almost unknown. Much better explored is the pathogenicity of this bacterium for plants, and some underlying mechanisms, such as quorum sensing and type III secretion systems, which could be also considered in the analysis of animal and human infections. The effects of *P. agglomerans* on infected plants could be increased by the ice nucleation activity of this bacterium, inciting frost injury in plants at the temperatures in which such injury normally does not occur.

Acknowledgements

The authors express their thanks to following: to the John Wiley & Sons, Inc., for permission to reproduce Figure 3 from the article by Shubov et al. [26], and Figures 8–11 from the articles by Gibson et al. [60], Medrano and Bell [80], Medrano et al. [73] and Manulis and Barash [93], all Figures protected by Copyright © John Wiley & Sons, All Rights Reserved; to the BMJ Publishing Group Ltd. for permission to reproduce Figure 2 from the article by Kratz et al. [11], and Figure 6 from the article by Al-Damluji et al. [54]; to the Elsevier BV. for permission to reproduce Figure 1 from the article by Oleningsi et al. [4], and to the Editors of *Tropical Gastroenterology* for permission to reproduce Figure 7 from the article by Rodrigues et al. [57].

REFERENCES

37. Habhab W, Blake PG.

56. Loch TP, Faisal M. Isolation of Pantoea agglomerans from brown trout (Salmo trutta) from Gilchrist Creek, Michigan, USA. Bull Eur Assoc Fish Pathol. 2007; 27(5): 200–204.

