Human dirofilariosis in Poland: the first cases of autochthonous infections with *Dirofilaria repens*

Danuta Cielecka1,2, Hanna Żarnowska-Prymek3,4, Aleksander Masny2, Ruslan Salamatin1,2, Maria Wesołowska5, Elżbieta Gołąb2

1 Department of General Biology and Parasitology, Medical University of Warsaw, Poland
2 Department of Medical Parasitology, National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland
3 Department of Zoonoses and Tropical Diseases, Medical University of Warsaw, Poland
4 Warsaw’s Hospital for Infectious Diseases, Poland
5 Department of Biology and Medical Parasitology, Wroclaw Medical University, Poland

Abstract

Dirofilaria (Nochtiella) repens Railliet et Henry, 1911 (Nematoda: Onchocercidae) is a subcutaneous parasite of dogs and other carnivorous animals, with man acting as incidental hosts. *D. repens* occurs endemically in warm climates on various continents, in Europe mainly in Mediterranean countries. The aim of this study was to summarize information on human dirofilariosis in Poland, taking into consideration parasitological and epidemiological data. Between April 2009 – December 2011, in the parasitological laboratories of Medical University in Warsaw and the National Institute of Public Health/National Institute of Hygiene, fragments of affected human tissues and parasite specimens were examined microscopically. Molecular methods were used to confirm the results from eight microscopic investigations. A literature review to summarize all data on dirofilial infections in humans in Poland was conducted. In these investigations, autochthonous dirofilariosis was found in humans for the first time in Poland. During the last 3 years, 12 new cases of human *D. repens* dirofilariosis were recognized. Since 2007, a total of 18 *D. repens* infection have been found in humans in Poland. Parasitic changes were located in various parts of the body, in the form of subcutaneous nodules containing single nematodes surrounded by granulation tissue (15 cases). In 3 cases, a subconjuctival localization was found. Seventeen of the 18 described cases were noted in central Poland where dirofilariosis occurred in dogs. In this area, autochthonous infection was identified in 3 women who had never left Poland in their lives; the others were probably infected outside the country while staying in endemic regions. Data on human and canine infection collected from central Poland during the last 5 years indicates that *Dirofilaria repens* has been introduced into our country, and that the infection is successfully spreading, with the border of the endemic area currently on 52°N, 21°E. To control the epidemiological situation it is necessary to identify *D. repens* hosts within local mosquito populations, and to monitor dogs. Because of the increasing number of cases of human infections, whether introduced or local, physicians should take dirofilariosis into consideration in differential diagnosis of skin and eye diseases.

Key words

Dirofilaria repens, human, Poland, autochthonous species

INTRODUCTION

The nematode from the Onchocercidae family *Dirofilaria (Nochtiella) repens* Railliet et Henry, 1911, is a subcutaneous parasite of dogs, cats and foxes, occurring endemically in the warm climate zone on various continents. The invasion is transmitted to humans by many species of zooanthropophilic mosquitoes. As a result of stinging by an infected mosquito, L3 larvae are introduced into the subcutaneous tissue where mature to adult forms reach from several to 15 cm in length, and about 0.5 mm in diameter. The migration of *D. repens* in tissue lasts from several weeks to several months, or even several years after infection have been described. The process may be accompanied by clinical symptoms in the form of local swellings, burning or pruritis. As a result of inflammatory reactions of subcutaneous tissue, dirofilaria is arrested and nodules containing parasites may occur in various parts of the body; sometimes, the nematode has a subconjuctival localization [1, 2, 3].

In Europe, over 1,500 cases of human dirofilariosis caused by *D. repens* have been described, most of them in Mediterranean countries – the greatest numbers in Italy (321) [2, 3, 4, 5, 6] and in Ukraine (932) [7]. During the last decade, autochthonous dirofilariosis have also been detected in European countries hitherto considered to be free from this invasion. The first cases of humans infected with *D. repens* in Poland were found in 2007 [8, 9, 10, 11]. There was, however, no evidence for their autochthonous origin, as all infected persons had visited areas with endemic dirofilariosis.

The aim of this study was to summarize information on human dirofilariosis in Poland, taking parasitological and epidemiological data into consideration.
MATERIAL AND METHODS

Laboratory investigations were performed in the period April 2009 – December 2011 in 3 centres in Warsaw: the Department of Zoonoses and Tropical Diseases (9 cases) and Department of General Biology and Parasitology (2 cases) of the Medical University in Warsaw (MUW), and 1 case in the Department of Medical Parasitology, National Institute of Public Health – National Institute of Hygiene (NIPH-NIH). Microscopic evaluation of histopathological preparations from sections of affected tissues (3 cases) and from 9 specimens of isolated parasites was performed. The material from 6 cases described earlier was reanalyzed (Tab. 1).

Molecular analysis of the genetic material of 6 nematodes was performed at the NIPH-NIH. DNA isolation was performed according to procedures described earlier [12, 13, 14]. Dirofilaria DNA was amplified using DR COI-F1 and DR COI-R1 primers [15] using Real-Time PCR [13]. The fragment of the gene of the first subunit of cytochrome oxidase (COI) was amplified from D. repens (GenBank AJ271614). The positive control was DNA from a D. repens isolate from Italy.

Information was collected from infected persons about their domicile and about trips taken outside of Poland. Data were collected from the literature concerning dirofilariosis cases in Poland, from a review of Polish and foreign publications.

RESULTS AND DISCUSSION

In these investigations, autochthonous dirofilariosis was found in humans for the first time in Poland (Case Nos. 10, 16 and 17) (Table 1). In the period from April 2009 – December 2011 in Warsaw and the Mazovian province, 12 new cases of human dirofilariosis were found. Altogether, to date in Poland, infections with D. repens have been found in 18 persons – 17 from the area of Mazovia (Warsaw, Grójec, Legionowo, Nowy Dwór Mazowiecki and Białobrzegi) [8, 9, 10, 11, current data], and 1 from Wrocław in Silesia [16, 17].

Characteristics of dirofilariosis cases found in Poland, March 2007 – December 2011. The infection was present in 18 persons aged 20–78 years (average age 42.6), encompassing 12 women and 6 men. Most patients had previously visited areas of endemic occurrence of D. repens. The trips were mainly to European countries: Italy, Greece, Ukraine, Hungary and the Czech Republic. Visits to South America and South Africa were also reported. Three female patients had never traveled outside Poland.

The parasitic changes were mainly localized in the subcutaneous tissue of the corpus (stomach, back, side, clavicle) – 7 cases, head (forehead, chin, supraciliary arch, occiput) – 6, on the thigh – 2. In 3 persons, the nematodes occurred subconsciously. The reason for visiting a physician (dermatologist, surgeon) was generally the appearance of a growing nodule. Sometimes pain symptoms with various degrees of intensity were present: tingling sensation, burning sensation, swelling and subcutaneous extravasations. In clinical diagnosis, cancer or furunculosis were suspected as the reason for the occurring symptoms. In 3 cases, the nematode was visible under the conjunctiva. Surgical interventions were used to remove only the nematode (11 persons) or the parasite with the affected tissue (7 persons).

The parasitic changes sent for histopathological analysis were in the form of nodules 1–2 cm in diameter. The nodules were filled with a mass composed of necrotically affected tissue, in which the parasite was centrally located. The necrotic material surrounding the nematode contained numerous granulocytes, mainly eosinophils. In 2 cases neutrophils were dominant, eosinophils were less numerous. Clusters of macrophages of the epithelioid type and single giant cells were also observed. The necrotic change was surrounded by fibrovascular granulation tissue, infiltrated by lymphocytes, plasmatic cells, single macrophages, and a large number of eosinophils; numerous strands of fibrous connective tissue were in the form of irregular clusters. In the fatty tissue surrounding the nodule there were also inflammatory infiltrations composed of numerous eosinophils, plasmatic cells and lymphocytes.

Morphological and molecular identification of D. repens. The completely removed nematodes were D. repens females, 95–115 mm long and at most 0.6 mm wide (Fig. 1A). A female removed from a patient’s eye had slightly smaller dimensions 85.1 × 0.545 mm [17]. In the front part of the nematode, at a distance of 1.7–2.0 mm from the apically located mouth aperture, a muscular vaginal segment was visible, terminated...
by an opening vulva (Fig. 1B–D). The anus was localized nearby – 100–160 μm, at the end of the body (Fig. 1E). The cuticle of the nematodes had characteristic structures in the form of longitudinal ridges and delicate transverse stripes (Fig. 1F–H). The number of longitudinal ridges in the central part of the nematode was about 100, and these structures disappeared in the anterior and posterior parts of the body.

In histological preparations (Fig. 2A, D), sections through the females were visible in the centre of the nodules; a male was present in only one case. The diameter of the females at the widest site was from 320–500 μm (average 430 μm), the diameter of the male was slightly less – 360 μm (Fig. 2B–G).

The dimensions of *D. repens* specimens isolated from humans in Poland are similar in size to the dimensions of specimens isolated in Italy, in which the diameter of the female varied from 445–570 μm, and individuals from southern Russia, where the diameter of the females was 450 μm. The length of the Polish specimens of *D. repens* females was within the range described for Italian specimens, i.e. 95–140 mm. Adult nematodes from dogs, which are their final host, attain a length of 110–170 mm [18, 19, 20, 21, 22, 23].

The multilayer cuticle of the nematodes was 10-15 μm in thickness. Its surface in cross-sections through the nematodes had folds resembling ridges, whose number on the circumference of the nematode was 90–102 (Fig. 1G, 2E–G). The height of these ridges was in the range of 2.5–5 μm, and the distance between them reached 8–12 μm. In longitudinal sections (Fig. 1H), additionally narrow stripes were visible (5–6 μm) located perpendicular to the nematode. The thickness of the hypodermis layer was 3–5 μm. Lateral thickenings of the hypodermis in the form of flattened strands with granular cytoplasm and cell nuclei separated the muscle into dorsal and ventral part (Fig. 2F–G). Muscle cells were composed of contractile and non-contractile elements. The reproductive system in females had the form of 2 ducts filled with oocytes (Fig. 2B, E, F). No microfilaria were found in any of the analyzed preparations of females. The reproductive system of the male in a cross section had the form of a single duct (Fig. 2C, G). Even though the clinical manifestations in some infected persons in Poland were maintained for as long as one year, in none of the tissue changes were advanced processes of scarring, calcification, or parasite decomposition observed. The nematode had a low degree of damage visible as separation of muscle layers, destruction of muscle cells and of cells of the hypodermal lateral cords. Destructive cuticle changes (softening, dissolution of structures, entrance of inflammatory cells into the deeper layers) were found in only one case.

In the differentiation of zoonotic nematodes isolated from humans in Europe, different species from the family Onchocercidae should be taken into consideration which cause tissue, subcutaneous or subconjunctival form of filariasis. The most important morphological characteristics allowing their differentiation is the structure of the cuticle surface and the diameter of the body [18, 19]. Of lesser diagnostic importance is the structure of the digestive and reproductive systems, the hypodermal lateral cords and the number of muscle cells. The *D. immitis* species found in Europe has a smooth cuticle surface. A cuticle structure similar to *D. repens* is found in species of zoonotic *Dirofilaria* occurring outside Europe: *D. tenius, D. ursi* and *D. striata*. However, they differ in respect to the body dimensions and a smaller number of ridges. Other nematodes with a similar subcutaneous or subconjunctival localization in humans *Loa loa* (smooth cuticle with knob-like structures) or *Onchocerca volvulus* (cuticle with circular stripes), are rarely brought to Poland from tropical countries. In Europe, single cases of *Onchocerca jakutensis* infections have also been described [24], *Onchocerca lupi* in Hungary [25], *Setaria latistepapillosa* in Romania [26]. These species, however, are characterized by the presence on the cuticle surface of a configuration with a circular and not longitudinal structure, as is found in *Dirofilaria*.

Positive results of the amplification of the gene of the first subunit of cytochrome oxidase and the analysis of melting curves of PCR products confirmed that out of 9 nematodes analyzed using this method, all belonged to the species *D. repens* (Tab. 1).

**Figure 2. Sections of subcutaneous nodules with nematode *Dirofilaria repens*.
A. and D. Overall views of subcutaneous nodules showing *D. repens* (location – abdominal wall). Sections of the nematode were surrounded by an inflammatory granuloma (H&E, Case Nos. 1 and 4).
B. Sections of coiled *D. repens* female in subcutaneous nodule (location – forehead region) (H&E, Case No. 10).
C. Sections of coiled *D. repens* male of in subcutaneous nodule (location – lumbar region) (H&E, Case No. 14).
D. Transverse section of *D. repens* female, two uterine tubes are evident (H&E, Case No. 4).
E. Transverse section of *D. repens* female with visible: oocytes visible inside the genital tubules; multilayered cuticle with external ridges, muscular cells, hypoderm, lateral chords, digestive tract (oesophagus) and genital tubes are well visible (H&E, Case No. 13).
F. Transverse section of *D. repens* female with visible: oocytes inside the genital tubules; multilayered cuticle with external ridges, muscular cells, hypoderm, lateral chords, digestive tract (oesophagus) and genital tubes are well visible (H&E, Case No. 14).
G. Transverse section of an adult male; single genital tube contains spermatocytes (H&E, Case No. 14).
Scale bars: A, D = 2 mm; B, C = 200 μm; E–G = 100 μm.**
In dogs. In May 2010, the infection was detected in a 37-year old woman living near Grójec (51°51’N, 20°52’E), in November 2011, in a female 50-year old inhabitant of Białozięgi (51°39’N, 20°52’E), and in December 2011, in a 56 year old woman living in Warsaw, who spent last summer in the Lublin province. As these women never left Poland, it can be assumed that the infection occurred in Poland. The remaining 15 invasions because of earlier trips abroad to endemic areas by infected persons or because of the lack of information about such trips, may be considered as imported. However, it can neither be confirmed nor excluded that at least some of these infections also took place in Poland. Most of the investigated persons (17 out of 18) live in an area where dirofilariosis has been detected in dogs, and all had in the past been exposed to mosquito bites.

Data from central Poland concerning dirofilaria invasion in animals and humans are in agreement with observations from other European countries. Cases of autochthonous dirofilariosis in humans are becoming increasingly common, among others in Serbia [35], Hungary [36], Austria [37] and in Slovakia [38, 39, 40]. In recent years, the boundary of dirofilariosis occurrence has moved a few degrees latitude in the northern direction. Currently, the northernmost area of dirofilariosis occurrence is the Moscow region in Russia (56°N), in which D. repens infections are noted both in animals and in humans [41, 42]. In western Europe, the D. repens has crossed the 48°N parallel – an infection was observed in a dog in the northern part of Baden-Württemberg in Germany [43, 44]. In the Netherlands, dirofilariosis has crossed 52°N parallel – an infection was observed in a dog [45].

The 3 new cases of autochthonous dirofilariosis in humans in Poland indicate that at present in central Europe the

Table 1. Characteristics of *Dirofilaria repens* samples analyzed in Warsaw in the period March 2007 – December 2011

<table>
<thead>
<tr>
<th>Case No.</th>
<th>Date analyzed</th>
<th>Type of sample</th>
<th>Results of microscopic analysis</th>
<th>Results of DNA analysis</th>
<th>Infected persons</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>March 2007</td>
<td>sections from nodule</td>
<td>D. repens♀ [8,9,10,11]</td>
<td>not done</td>
<td>MV, Warsaw, Greece</td>
</tr>
<tr>
<td>2</td>
<td>May 2007</td>
<td>sections from nodule</td>
<td>D. repens♀ [10,11]</td>
<td>not done</td>
<td>MV, Warsaw, South Africa</td>
</tr>
<tr>
<td>3</td>
<td>September 2007</td>
<td>sections from nematode</td>
<td>D. repens♀ [10,11]</td>
<td>not done</td>
<td>MV, Warsaw, Italy, Greece, Ukraine, Hungary</td>
</tr>
<tr>
<td>4</td>
<td>February 2008</td>
<td>sections from nodule</td>
<td>D. repens♀ [10,11]</td>
<td>not done</td>
<td>MV, Pruszków, Czech Republic</td>
</tr>
<tr>
<td>5</td>
<td>April 2008</td>
<td>sections from nodule</td>
<td>D. repens♀ [10]</td>
<td>D. repens♀ [13,14]</td>
<td>MV, Europe</td>
</tr>
<tr>
<td>6</td>
<td>March 2009</td>
<td>whole nematode**</td>
<td>D. repens♀ [16,17]</td>
<td>D. repens♀</td>
<td>LSV, Wrocław, Greece</td>
</tr>
<tr>
<td>7</td>
<td>April 2009</td>
<td>whole nematode**</td>
<td>D. repens♀</td>
<td>D. repens♀ [13,14]</td>
<td>MV, Europe</td>
</tr>
<tr>
<td>8</td>
<td>August 2009</td>
<td>sections from nematode</td>
<td>D. repens♀</td>
<td>D. repens♀ [13,14]</td>
<td>MV, South America</td>
</tr>
<tr>
<td>9</td>
<td>September 2009</td>
<td>whole nematode</td>
<td>D. repens♀</td>
<td>D. repens♀ [13,14]</td>
<td>MV, Europe</td>
</tr>
<tr>
<td>10</td>
<td>May 2010</td>
<td>sections from nodule</td>
<td>D. repens♀</td>
<td>not done</td>
<td>MV, Grójec, did not travel outside Poland</td>
</tr>
<tr>
<td>11</td>
<td>July 2010</td>
<td>whole nematode</td>
<td>D. repens♀</td>
<td>not done</td>
<td>MV, Legionowo, Europe</td>
</tr>
<tr>
<td>12</td>
<td>September 2010</td>
<td>whole nematode</td>
<td>D. repens♀</td>
<td>not done</td>
<td>MV, Europe</td>
</tr>
<tr>
<td>13</td>
<td>March 2011</td>
<td>whole nematode, sections from nematode</td>
<td>D. repens♀</td>
<td>D. repens♀</td>
<td>MV, Nowy Dwór Mazowiecki, no data</td>
</tr>
<tr>
<td>14</td>
<td>June 2011</td>
<td>sections from nodule</td>
<td>D. repens♀</td>
<td>D. repens♀</td>
<td>MV, Italy</td>
</tr>
<tr>
<td>15</td>
<td>August 2011</td>
<td>whole nematode**</td>
<td>D. repens♀</td>
<td>D. repens♀</td>
<td>MV, Warsaw, no data</td>
</tr>
<tr>
<td>16</td>
<td>November 2011</td>
<td>sections from nodule</td>
<td>D. repens♀</td>
<td>not done</td>
<td>MV, Bialobrzegi, did not travel outside Poland</td>
</tr>
<tr>
<td>17</td>
<td>December 2011</td>
<td>sections from nematode</td>
<td>D. repens♀</td>
<td>not done</td>
<td>MV, Warsaw, did not travel outside Poland</td>
</tr>
<tr>
<td>18</td>
<td>December 2011</td>
<td>whole nematode</td>
<td>D. repens♀</td>
<td>not done</td>
<td>MV, Poland</td>
</tr>
</tbody>
</table>

Parasitological laboratories: Department of Zoonoses and Tropical Diseases, MUW; Department of General Biology and Parasitology, MUW; Department of Medical Parasitology, NIPH-NIH.

Legend
- MV – Masovian Voivodeship; LSV – Lower Silesian Voivodeship
- ** – autochtonous cases
- MV no data
- D. repens – *Dirofilaria repens*
and funding the morphological and molecular analyses, and heads of the authors' respective institutions for permitting to all physicians (clinicians) and anatomo-pathologists for concerning their first cases. The authors are also grateful

Institute of Hygiene

List of abbreviations used:

- MUV – Medical University of Warsaw
- NIPH-NIH – National Institute of Public Health – National Institute of Hygiene
- MV – Masovian Voivodeship
- LSV – Lower Silesian Voivodeship
- H&E – hematoxylin and eosin stain

Acknowledgements

The authors wish to express their thanks Prof. Silvio Pampiglione (University of Bologna) for consultations concerning their first cases. The authors are also grateful to all physicians (clinicians) and anatomo-pathologists for their cooperation, and for making samples available for parasitological investigations. Thanks are also due to the heads of the authors’ respective institutions for permitting and funding the morphological and molecular analyses, and preparation of the manuscript. The research was supported by the Polish National Science Centre, Grant No. N404 256840.

REFERENCES

5. Genchi C. Epidemiology and distribution of Dirofilaria and dirofilariosis in Europe: state of the art. Proceedings of the Helminthological Colloquium; 2003 Nov 14; Vienna.

