Seroprevalence of leptospirosis in rural populations inhabiting areas exposed and not exposed to floods in eastern Poland

Bernard Wasiński1, Jacek Sroka2,3, Angelina Wójcik-Fatla3, Violetta Zając3, Ewa Cisak3, Józef P. Knap4, Anna Sawczyn3, Jacek Dutkiewicz3

1 Department of Swine Diseases, National Veterinary Research Institute, Pulawy, Poland
2 Department of Parasitology, National Veterinary Research Institute, Pulawy, Poland
3 Department of Zoonoses, Institute of Rural Health, Lublin, Poland
4 Department of Epidemiology, Medical University, Warsaw, Poland

Abstract

Blood serum samples collected from randomly selected groups of 100 persons inhabiting rural community ‘A’ located in eastern Poland and exposed to floods by the Vistula river, and 98 persons inhabiting rural community ‘B’, also located in eastern Poland, but in the area not exposed to floods were examined by the microscopic agglutination test (MAT) for the presence of antibodies against 18 Leptospira serovars. Positive results showed 3% of serum samples collected from community ‘A’, while the seroprevalence in community ‘B’ was 9.2%, being insignificantly higher than in community ‘A’. For both examined communities (n=198), a significant positive correlation was found between the prevalence and titer of seropositive response and age of examined people (r=0.145, p=0.042). No significant differences were found between the prevalence of positive reactions in males and females (p=0.05). The reactions with 10 serovars of Leptospira (Australis, Autumnalis, Hebdomadis, Hardjo, Sejroe, Zanoni, Bataviae, Bratislava, Canicola and Grippotyphosa), belonging to 3 species (L. interrogans, L. borgpetersenii, L. kirschneri), were found in the examined communities. From both communities, of 12 persons demonstrating positive results in MAT, 9 showed reaction with one serovar, 2 with two serovars and 1 with three serovars. The highest titer found during the examination did not exceeded 800. In conclusion, our results suggest that there is only a slight, if any, hazard of an leptospirosis epidemic after the flood that afflicted eastern Poland in the year 2010 and the general epidemiological situation of leptospirosis in eastern Poland. Although there does not seem to be any cause for concern, further research is needed.

Key words

leptospirosis, sero-prevalence, farmers, eastern Poland

INTRODUCTION

Leptospires are thin, helical bacteria classified currently into at least 13 pathogenic species, comprising in turn more than 260 serovars, and 6 saprophytic species, with more than 60 serovars [1, 2]. Although this classification is dynamic, it is expected that additional new species also exist [1]. Leptospires are capable of surviving in a wide range of moist environmental conditions, including soil, mud, ground water, streams, rivers and lakes [3]; however, the main niche for their maintenance are warm-blooded organisms, mainly mammals. Leptospires survive usually in the renal tubules of rodents and many other wild and domestic animals [1, 2, 4]. Humans become infected most commonly through occupational, recreational, or domestic contact of skin with the urine of infected animals, either directly or via contaminated water or soil [1, 5].

Leptospirosis is regarded as the most widespread zoonosis in the world that represents a re-emerging health problem because of increasing the incidence among humans and domestic animals [1, 6, 7, 8, 9]. Depending on the serovar, the immune status of the host and many other known and unknown factors, the disease can run as a mild, flu-like illness or a severe infection capable causing serious multiorgan or systemic disorders leading to death. Despite this, the disease is severely neglected and the estimated incidence of about half a million severe human cases annually is probably an underestimation [10]. Leptospira spp. present an occupational risk to agricultural workers, slaughterhouse workers, sewage workers, veterinarians and other professions [5, 11]. The mechanisms of pathogenesis of Leptospira are largely unknown [8]. With global climate change, extreme weather events such as cyclones and floods are expected to occur with increasing frequency and greater intensity and may potentially result in an upsurge in the disease incidence, as well as the magnitude of leptospirosis outbreaks [12]. The natural foci of leptospirosis may occur in swampy areas and could be described as ‘marsh fever’ [13, 14].

Leptosporal infection in humans may be symptomless and the only proof of such infection are specific anti-Leptospira antibodies. Thus, the serological response rate of the examined population to Leptospira antigen may be regarded as an indicator of prior contact with these bacteria and the degree of exposure. Reported response rates in agricultural workers living in the countries located in the tropical climate...
zone (Tanzania, Nigeria, Somalia, India) are within the range of 19.4-62.5% [15, 16, 17, 18], whereas the analogous rates in similar workers living in the temperate climate zone (The Netherlands, USA, Northern Ireland, Italy) are usually lower, ranging between 0.5-23.5% [19, 20, 21, 22, 23, 24].

The aim of this study was to investigate seroprevalence of Leptospira spp. among adult farmers living in two rural communities of the Lublin Province in eastern Poland. Community ‘A’ is situated on the Vistula river, in the western part of the province, an area often exposed to the consequences of raised levels of the river (wet soil, inundations), and in the summer of 2010 was afflicted by two huge floods. By contrast, community ‘B’ is situated in the central part of the province and does not experience floods.

MATERIALS AND METHODS

Examined population. Blood serum samples collected from 100 randomly selected persons (27 males and 73 females) inhabiting the rural community ‘A’, exposed to floods, and serum samples from 98 persons (27 males and 71 females) inhabiting the rural community ‘B’ not exposed to floods, were examined during the study. The mean age of the investigated group for community ‘A’ (x ± S.D.) was 51.1 ± 13.4 yrs (range 18-79 yrs), while for community ‘B’ it was 54.1 ± 14.7 yrs (range 18-85 yrs). Collected serum samples were examined by the microscopic agglutination test (MAT) with live antigens.

Antigens. Cultures of reference strains of Leptospira interrogans serovars: Australis, Autumnalis, Bataviae, Bratislava, Canicola, Hardjo, Hebdomadis, Icterohaemorrhagiae, Pomona, Zanoni, – L. borgpetersenii serovars: Ballum, Poi, Serjoe, Tarassovi, – L. kirschneri serovars: Cynopteri, Grippotyphosa, – L. weili serovar Celledoni, – and L. biflexa serovar Patoc kept in the Department of Swine Diseases of the National Veterinary Research Institute in Pulawy were used for preparation of MAT. The strains were obtained from FAO/WHO Reference Laboratory for Leptospirosis of the Royal Tropical Institute in Amsterdam. Leptospires were cultivated in EMJH (Ellinghausen McCullough Johnson and Harris) liquid medium at 30°C in aerobic conditions. The strains were subcultured every 7 days.

Microscopic agglutination test. This test was carried out according to the OIE Manual of Standards for Diagnostic Tests and Vaccines [25], as described previously [26]. The serum samples were mixed with an equal volume of each of the Leptospira serovars. Serum dilution (including added antigen) used during preliminary examination was 1:100. For samples reacting in the preliminary examination with one or more serovars, series of twofold dilutions were prepared to titre the end point – 50% agglutination. The samples with titres ≥100 were recognized as positive.

Statistical analysis. The data were analysed by Student’s t-test and Pearson’s test for correlation, with the use of STATISTICA for Windows v. 5.0 package (StatSoft Inc., Tulsa, Oklahoma, USA).

RESULTS

The results are summarized in Table 1. In the group of persons from community ‘A’, 3% of serum samples showed the presence of anti-Leptospira antibodies. In community ‘B’, not affected by flood, the seroprevalence was 9.2%, being insignificantly higher than in community ‘A’ (p=0.0764).

Reactions with 10 serovars of Leptospira spp. belonging to 3 species (L. interrogans, L. borgpetersenii, L. kirschneri) were found in the examined communities. From both communities, a total of 12 persons who presented positive results in MAT, 9 of them showed positive reactions with one serovar, 2 with two serovars and 1 with three serovars (Tab. 1). Altogether, there were indicated 2 serum samples reacting with serovar Australis and 2 with serovar Zanoni, 5 samples, each reacting with one of following serovars: Bataviae, Bratislava, Canicola, Grippotyphosa, Hebdomadis, 1 serum reacting with serovars Sejroe and Hardjo, 1 reacting with serovars Hebdomadis and Autumnalis and 1 showing reactions with serovars Hebdomadis, Hardjo and Sejroe. Among the positive samples, 4 sera presented titer 100, 4 showed titer 200, 3 demonstrated titer 400 and 1 – titer 800.

Table 1. Comparison of serological reactions with various serovars of Leptospira spp. indicated by the use of MAT among inhabitants of two rural communities in the Lublin Province of eastern Poland

<table>
<thead>
<tr>
<th>Community</th>
<th>Number of examined serum samples</th>
<th>Positive serum samples</th>
<th>Sex of positive re-</th>
<th>Age of positive re-</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of reacted with serovar(s)</td>
<td>Titer(s)</td>
<td>actant(s)</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>100</td>
<td>Bataviae</td>
<td>F 42</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Bratislava</td>
<td>F 18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Hardjo</td>
<td>M 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Sejroe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>98</td>
<td>Australis</td>
<td>F, F 39, 70</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Canicola</td>
<td>F 85</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Grippotyphosa</td>
<td>M 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Hebdomadis</td>
<td>F 79</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Hebdomadis</td>
<td>F 56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Autumnalis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Hebdomadis</td>
<td>F 52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Sejroe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Zanoni</td>
<td>F, M 57, 61</td>
<td></td>
</tr>
</tbody>
</table>
| M=Male, F=Female

For both examined communities (n=198), a significant positive correlation was found between the prevalence and titer of seropositive response and age of the examined people (r=0.145, p=0.042). No significant differences were found between the prevalence of positive reactions in males and females (p>0.05).

DISCUSSION

In Poland, the most important endemic area of leptospirosis is Lower Silesia, an area where epidemics of ‘marsh fever’, often associated with floods, propagation of rodents and/or performing of agricultural works, have been described since the 19th century up to the second half of the 20th century [13, 14, 27, 28, 29]. In the southern part of the Lublin Province, epidemics of leptospiral ‘marsh fever’ were noted in the years...
leptospirosis have occurred in Poland since the 1970s, not western Poland. 1.2% of seropositive reactions to Leptospira higher compared to those reported by Juszczyk study in community 'A', experienced after a flood was low however, considering the scale of the monitoring and the central laboratory in Wroclaw [29] and was the subject of the eastern part of the province [35]. No extensive epidemics of Mitis, Australis, and Saxkoebing. In 1957-1958, only a few samples, 31 % reacted with serovar Grippotyphosa, 28% with serovar Bovis, and the remaining 17.6% with serovars: Pomona, Canicola, Sejroe, Mittis, Australis, and Saxkoebing. In 1957-1958, only a few cases of human leptospirosis were found in the southern part of Lublin Province [33]. It was not until twenty years later that a group of 10 leptospirosis cases were described in the eastern part of the province [35]. No extensive epidemics of leptospirosis have occurred in Poland since the 1970s, even after a flood that afflicted Lower Silesia in 1997. The seroepidemiology of the disease is continuously monitored by the central laboratory in Wrocław [29] and was the subject of separate studies in various parts of the country [36, 37, 38]; however, considering the scale of the monitoring and the frequency of mentioned studies, the threat of a leptospirosis epidemic in Poland can be quickly identified and eliminated.

The prevalence of seropositive farmers noted in the present study in community 'A', experienced after a flood was low (3%), and insignificantly smaller compared to farmers from community 'B' who were not affected by flood (9.2%). These, rather unexpected, results could be explained by the proper ensuring of the inhabitants against health consequences of the flood, and most probably also by the properties of the natural constituents of the environment – soil, water, fauna – which favoured the circulation of leptospiros in community 'B'.

The prevalence values obtained in the presented study are higher compared to those reported by Juszczyn et al. [36] who found in the farmers living in the Wielkopolskie Province (western Poland) 1.2% of seropositive reactions to Leptospira. These are lower compared to the data of Cybulski et al. [37] who obtained 11% of seropositive reactions in the farmers living in the north-central part of Lublin Province. Our results are also lower compared to those reported by Krawczyk [38] who found 13.8% of seropositive reactions among the rural inhabitants of Kujawsko-Pomorskie Province exposed to infected animals, and 1.5% among those without such contact. Compared to similar studies performed in Europe, the results of the presented study are higher compared to those obtained in the Netherlands by Elbers et al. [19] (0.5%), and lower compared to those obtained in Northern Ireland by Stanford et al. [22] (8.1%), and in Italy by Nuti et al. [23] (10-12%) and Fenga et al. [24] (23.5%).

In conclusion, the results of the presented study suggest that there is only a slight, if any, hazard of a leptospirosis epidemic after the flood that affected eastern Poland in 2010. However, although the general epidemiological situation of leptospirosis in eastern Poland does not seem of great concern, further research is still needed.

Acknowledgements

This study was supported by the Polish National Centre of Science, Grant No. N N404 265840. The authors express their thanks Mrs. Malgorzata Lucjanek for excellent technical support.

REFERENCES