INTRODUCTION

The north-eastern part of Poland is considered a preference area of high risk of tick-borne diseases infection [38]. Especially in recent years there has been an observed increase cases of infection in humans as well as animals, caused especially by Lyme borreliosis, TBE and HGE agents [10, 11, 34, 47, 50]. The most important reason for the high risk of infection is exposure to ticks attack. Moreover, the increase in ticks population, and the spreading of ticks to new geographic areas has been observed [17]. There are two main factors significantly favourable for tick’s expansion. The most important one is global warming, the signs symptoms of which are increases in average temperatures in winter months, along with shorter winter periods [5, 15]. Another factor is the growth of the deer population as well as small mammals which are the ticks’ hosts.

The problem of increasing incidence of Lyme borreliosis and TBE sick rate is commonly known and studied. However, human granulocytic anaplasmosis is a fairly new issue. It has been studied in Poland only in the last decade [21, 41, 50]. The etiological agent of HGE is Anaplasma phagocytophilum. This is a Gram(-) bacteria belonging to Anaplasmataceae family. It is an obligatory parasite which grows and replicates in the membrane-bound vacuoles in the cells of vertebrate and invertebrate host [14]. Neutrophils are the cells mainly infected.

A. phagocytophilum was discovered for the first time in European ruminants in 1932 and described as Cytoecetes phagocytophila [18]. For over 70 years it was considered as a pathogen of domestic and free living ruminants in...
In Europe [48]. However, as a result of phylogenetic analysis of 16S rRNA gene and operons groESL, significant changes were made in the taxonomy of Anaplasmataceae. *Ehrlichia equi, Ehrlichia phagocytophila* and HGE agents have been unified into a single species and classified as the *A. phagocytophilum* [14]. Human infections with *A. phagocytophilum* were detected between the years 1990–1994 in the USA for the first time, among inhabitants of the states of Wisconsin and Minnesota [9]. In Poland, the first case of HGE infections was diagnosed by PCR analysis in 2001 [45].

In the environment, species from Cervidae family serves the animal reservoir for *A. phagocytophilum*. In Europe these species are: roe deer (*Capreolus capreolus*), red deer (*Cervus elaphus*), elk (*Alces alces*) [1, 6, 12, 36, 44, 48]. Moreover, infections with *A. phagocytophilum* were also detected in chamois (*Rupicapra rupicapra*), mouflon (*Ovis musimon*) boars (*Sus scrofa*) [29, 42]. In Poland, *A. phagocytophilum* was also detected in the blood of the European bison (*Bison bonasus*) free living in Białowieża Primeval Forest [22] and red foxes (*Vulpes vulpes*) in Mazovia Province [24].

Apart from the above, many small mammals such as: wood mouse (*Apodemus sylvaticus*), yellow–necked mouse (*Apodemus flavicollis*), field vole (*Microtus agrestis*), bank vole (*Myodes glareolus*), and common shrew (*Sorex araneus*), participate in the circulation of *A. phagocytophilum* in natural zoonotic foci. Among domestic animals and pets, *A. phagocytophilum* infections have been detected in cattle, goats and sheep [7, 20, 29, 35, 40].

The presence of two distinct genetic variants of *A. phagocytophilum* has been described by Massung et al. [30]. There is the Ap-ha variant, which is pathogenic for humans, dogs and horses, and the non-pathogenic variant Ap-V1. In North America, the main reservoir for Ap-ha variant, is the white-footed mouse *Peromyscus leucopus*. For the non-pathogenic type Ap-V1, the white-tailed deer (*Odocileus virginianus*) is considered to be a competent animal reservoir [30, 33].

Research performed by Massung et al. [30] indicate, that *Odocoileus virginianus* is considered to be an animal reservoir for the non-pathogenic type Ap-V1. Michalak et al. [32] suggest that analysis of sequences from fallow deer and red deer are similar to sequences of *A. phagocytophilum* pathogenic for humans in North America in 99.7–100.0%. The role of Cervidae as a reservoir of the pathogenic type for HGE agent cannot be unambiguously determined. Unique genetic mechanism which leads to production of a wide range of surface proteins and distinctive pleomorphism is recognized within *A. phagocytophilum* [4, 26]. Distinct genetic variants of *A. phagocytophilum* may exist within the same populations and even simultaneously in the same animals. These variants may behave differently and interact in the mammalian hosts [43]. Diverse genetic variants of *A. phagocytophilum* have been observed among wild ruminants, in North America [30], Slovenia [36], Italy [8] and the Czech Republic [49].

The high prevalence of *A. phagocytophilum* natural infection of Cervidae indicates that this group of animals plays a significant role as an animal reservoir of HGE agent in Europe [29, 36, 37]. So far, serologic and molecular studies of natural infection with *A. phagocytophilum* have shown the especially high prevalence of infections of deer species in North America [6, 16, 27, 30, 46], Japan [25], Spain [12], Italy [3], Holland [19], Switzerland [28, 29], Austria (Po et al. 2004), Slovakia [7], Czech Republic [49], Great Britain [2] and Norway [44]. In Poland, the researches on *A. phagocytophilum* infections in wild mammals were conducted in north-western and eastern parts of the country [1, 32]. The infections were detected in red deer [32], roe deer [1], European bison and root vole [20, 21].

The main goal of our studies was to determine the presence of *A. phagocytophilum* DNA in the blood of animals from the Cervidae family living in the northeast of Poland, and establish their role as a HGE agent animal reservoir. The studies can be very helpful in defining the rate of risk of infection among humans living in the north-eastern part of Poland.

MATERIALS AND METHODS

Study sites. The studies were conducted in Białowieża Primeval Forest (N52°29’–52°57’, E23°31’–24°21’), and in two forest divisions in the Mazurian Lakeland – Mikołajki (N53°48’, E21°34’), and Strzalowo (N53°46’, E21°27’). The blood samples of wild living cervids originating from legally hunted animals, and additionally, blood samples were collected from animals bred in the Deer Farm of the Institute of Parasitology of the Polish Academy of Sciences in Kosowo Górne (N53°49’, E21°23’). Material used in the study was gathered between 2004–2008. Blood specimens were collected into sterile, EDTA containing microtubes and stored until DNA isolation at +4°C. Blood was collected from *Capreolus capreolus* (11♀ from Białowieża, 1♂ from Mikołajki, 17♀ from Strzalowo, 2♀ from Kosowo Górne), *Cervus elaphus* (13♀; 16♂ from Mikołajki, 10♀; 9♂ from Strzalowo, 25♂, 33♀ from Kosowo Górně), *Cervus nippon Hortorum* and Dama dama from Kosowo Górně, (19♀, 13♂ and 70♀; 60♂ respectively). To sum up, the blood samples from 106 red deer, 32 sika deer, 130 fallow deer and 31 roe deer were collected.

DNA extraction. DNA was isolated from 200 µl of each sample using a Genomic Mini AX blood kit (A&A Bio Technology, Gdynia) following the manufacturers protocol. DNA was eluted into a total volume of 100 µl of nuclease free water. Isolated DNA samples were stored at +4°C until further processing.

PCR diagnosis for *A. phagocytophilum*. To verify whether genomic DNA had been isolated successfully from each tissue sample, all the DNA templates were screened for the presence of bacterial DNA. Molecular detection of
A. phagocytophilum was based on nested PCR amplification of 16S rRNA species-specific gene fragment. Primers and PCR conditions were used as published previously (ge3a 5’CACATGCAAGTGCAGGGTAATTCT3’ and ge10r 5’TTCGGTAAAGGAGTCTATCTCC3’, following ge9f 5’AACGGATTATCTTTTAGCTTGCT3’ and ge2 5’GGCGATTTAAAAGCAGTCCAGG3’) [23, 31]. In the first reaction, 932 long fragments were amplified, and in the second round, the portion with a length of approximately 546 bp was obtained.

PCR reaction was performed in a total volume of 25 µl reaction mixture, contained 2 × DyNazymeII Master Mix PCR (Finzymes). As a positive control, the sequenced DNA of A. phagocytophilum was used. In the negative control, nuclease-free water was added to the PCR mix instead of the tested DNA. The final phase of PCR reaction included cooling of the samples to +4°C.

PCR products were visualized by electrophoresis on 1% agarose gel stained with GoldView Nucleic Acid Stain (Beijing SBS Genetech Co. Ltd.). The size of amplified fragments of an assumed 546 bp size was compared to a known DNA marker.

DNA Sequencing of PCR products. The sequencing reaction was performed at the Department of Molecular Biology (Faculty of Natural Science, Comenius University, Bratislava, Slovak Republic). The complementary strands of each sequenced products were manually assembled. Sequences were compared with GenBank entries by Blast N2.2.13. Sequence similarity among the sequences of the same species studied. The highest prevalence was reported in red deer (Cervus elaphus) – 50.9% (54 infected out of 106 investigated), roe deer (Capreolus capreolus) – 38.7% (12 out of 31) and sika deer (Cervus nippon hortulorum) – 34.4% (11 out of 32). The lowest rate of infection was detected in fallow deer (Dama dama). Out of the 130 tested animals, only 2 (1.5%) have had pathogen. The infection rate of farmed red deer was lower than those free living (Tab. 1).

RESULTS

Prevalence of infection in cervides. A. phagocytophilum DNA was detected in the specimens of every deer species studied. The highest prevalence was reported in red deer (Cervus elaphus) – 50.9% (54 infected out of 106 investigated), roe deer (Capreolus capreolus) – 38.7% (12 out of 31) and sika deer (Cervus nippon hortulorum) – 34.4% (11 out of 32). The lowest rate of infection was detected in fallow deer (Dama dama). Out of the 130 tested animals, only 2 (1.5%) have had pathogen. The infection rate of farmed red deer was lower than those free living (Tab. 1).

Table 1. Number of investigated animals and prevalence of infection with *Anaplasma phagocytophilum* in the studied areas.

<table>
<thead>
<tr>
<th>Hosts</th>
<th>Mikołajki</th>
<th>Strzalowo</th>
<th>Kosewo Górne</th>
<th>Białowieża</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. elaphus</td>
<td>58.6% (17/29)</td>
<td>57.9% (11/19)</td>
<td>44.8% (26/58)</td>
<td>–</td>
<td>50.9% (54/106)</td>
</tr>
<tr>
<td>C. capreolus</td>
<td>0%* (0/1)</td>
<td>52.9% (9/17)</td>
<td>50%* (1/2)</td>
<td>18.18% (2/11)</td>
<td>38.7% (12/31)</td>
</tr>
<tr>
<td>C. nippon hortulorum</td>
<td>–</td>
<td>34.4% (11/32)</td>
<td>–</td>
<td>34.4% (11/32)</td>
<td></td>
</tr>
<tr>
<td>D. dama</td>
<td>–</td>
<td>1.5% (2/130)</td>
<td>–</td>
<td>1.5 % (2/130)</td>
<td></td>
</tr>
</tbody>
</table>

* – statistically insignificant

Results of DNA sequencing nested PCR products. Sequence analysis of the 16S gene showed that the sequences obtained in this study shared 99% homology to *Anaplasma phagocytophilum*. The sequences were sent to the GenBank database, accession numbers originally obtained in this study area: Dama dama (GQ450276), Capreolus capreolus (GQ450277), Cervus elaphus (GQ 450278).

DISCUSSION

Our results confirm the quite high prevalence of infection of wild ruminants with *Anaplasma phagocytophilum* in north-eastern Poland. The percentage of infected animals is variable, in comparison with results obtained in other parts of Poland, as well as in different countries.

The prevalence of infection of red deer C. elaphus in the Mazurian Lakeland (44.81 up to 58.62%) is higher than the prevalence in red deer recorded by Michalik et al. [32] in north-western Poland, where the overall prevalence was 10.2%. Moreover, the data from other countries is also different from Poland. In the Czech Republic and Slovenia the prevalence is higher than in the Mazurian Lakeland (86.0% and 87.5%, respectively) [36, 49]. In Slovakia and Austria, the percentage of infected red deer is relatively low (53.1% and 28.6%, respectively) [37]. It is interesting that the infection of farmed red deer was 10% lower than those free living. This may be caused by regular (twice a year) injections with ivermectin (Vetamectin) in order to remove helminths.

The same rule applies to the prevalence of infection of roe deer (C. capreolus) with *A. phagocytophilum*. In our study, the percentage of infected roe deer was 50.0–52.9%. According to the data given for north-western Poland by Adamska and Skotarczak [1], the roe deer is infected in 31.9%. In Slovenia and Slovakia, the prevalence of infection of roe deer is higher or similar (85.6% and 50.0%, respectively) [36, 42]. In Austria, Switzerland and Spain the prevalence is lower (43.0%, 18.4% and 18.0%, respectively) [13, 29, 41].

Michalik et al. [32] correlate the prevalence of infection of wild living animals from north-western Poland with the prevalence of *A. phagocytophilum* infection in female ticks I. ricinus. Their mean prevalence in north-western Poland is 22.7% (range 20–23.7%). Moreover, it is possible to extend this rule to the rest of the country, as well as to other regions of Europe. The higher prevalence of *A. phagocytophilum*...
infections in north-eastern Poland correlates with the higher abundance of ticks [39]. The supposition confirms the high rate of European bison (Bison bonasus) infection which reaches 62.5% in Białowieża Primeval Forest [22].

The prevalence of A. phagocytophilum infection in fallow deer (D. dama) and sika deer (C. nippon hortulorum) – 1.5% and 34.4%, respectively – is relatively low. However, the animals were bred on farm; consequently, their exposure to ticks attacks is lower than free living animals. This may be the reason that the percentage of infected fallow deer in north-western Poland reaches up to 20.5% [32].

North-eastern Poland is considered an endemic region for many tick-borne zoonoses. For many years, this region has been the endemic area of TBE, borreliosis and anaplasmosis [38]. Wild living ruminants, being infected in more than 50.0% with A. phagocytophilum, are the important components in the structure of the HGE zoonotic foci in the natural environment.

Acknowledgement

This work was supported by the MNiSW project N308 017 31/1488, VEGA 2/6163/26, No. APVV-51-009205, APVV 0108-06 and SAIA National Scholarship Programme.

REFERENCES

Cervids infections with Anaplasma phagocytophilum

43. Stuen S: Anaplasma phagocytophilum- the most widespread tick-borne infection in animals in Europe. Vet Res Commun 2007, 31 (Suppl. 1), 79–84.

