Air samplings in a Campylobacter jejuni positive laying hen flock

Marwa Fawzy El Metwaly Ahmed1,2, Jochen Schulz3, Joerg Hartung1

1 Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Germany
2 Department of Animal Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt

Address for correspondence: Marwa Fawzy El Metwaly Ahmed, Buenteweg 17p, 30559 Hannover, Germany
E-Mail: mrw_fawzy@yahoo.com, marwa.ahmed@tiho-hannover.de

INTRODUCTION

Campylobacter jejuni (C. jejuni) is an important zoonotic agent in Europe and many other countries worldwide [1, 2, 3]. The bacterium causes gastrointestinal infection after consumption of contaminated food. Poultry meat is the main source of infections and poultry houses can be a reservoir of C. jejuni [4, 5]. It is suggested that horizontal transmission plays a major role in the spread of C. jejuni within and between poultry flocks [6]. Probable sources of infection include colonized birds, contaminated faeces, feed, litter, water, equipment and transport vehicles, or even wild birds and insects [7, 8]. However, the role of airborne transmission is not well understood. Culturable airborne C. jejuni was isolated by Bull et al. [9] within and very close to - at a distance of in 30 m – a broiler barn. The concentration of Campylobacter spp. remained unknown because the authors used an enrichment method for the detection. Zhao et al. [10] tried to quantify culturable airborne C. jejuni with different air sampling techniques in an experimental room with infected broilers, but the detection failed. On the other hand, a poultry worker was probably infected by inhaling C. jejuni containing aerosols [11]. Therefore, it seems necessary to assess the risk of airborne infections at workplaces such as poultry houses. For this assessment, it would be useful to estimate the concentrations of airborne cultivable C. jejuni. Unfortunately, so far there is no recommended air sampling technique for this purpose. A standardized method, which was used several times to measure concentrations of airborne cultivable bacteria in poultry buildings, is the impingement with AGI-30 impingers [12, 13, 14]. This technique samples airborne microorganisms in a fluid (usually buffer or water) and allows detecting high microbial concentrations in animal house air [15]. If the sampling solution is filtered, the detection limited can be lowered to 12 cfu/m³ [16]. Using AGI-30 impingers in poultry houses may also deliver comparable results to former studies [17, 18]. But, the detection of airborne Campylobacter with AGI-30 impingers has not been successful to date [10]. Therefore, a novel air sampler that recently showed a low detection limit for airborne bacteria cells Coriolis®μ [19] was used, taking the AGI-30 impinger as a reference method to compare the sampling efficiencies of the devices. Tests were conducted in a C. jejuni positive laying hen flock, expecting an airborne exposure to animals and humans. Air samples were tested for the total number of cultivable mesophilic bacteria and cultivable C. jejuni. Furthermore, airborne dust samples were taken simultaneously and analysed for the presence of C. jejuni specific DNA, which may indicate the occurrence of non-culturable C. jejuni cells in the poultry house air.
MATERIALS AND METHODS

Sampling locations and sampling period. Samples were taken in a forced ventilation laying hen house equipped with an aviary system (NATURA 60, Big Dutchman, Germany). Altogether, 2,300 laying hens (breeding line ‘Silver’, Lohmann, Cuxhaven, Germany) were kept in this multilevel system with nest boxes at the sidewalls and a littered scratching area inside. The birds also had access to an outdoor scratching area (winter garden) via 6 openings in a sidewall. During the measurements, only a small number of hens (approx. 200) could be observed in this area. Samplings were carried out weekly between 10.00 – 13.00, beginning on the 14th and ending on the 19th week of one laying period. Air samples were taken lengthwise in the centre of each third of the laying hen house. The instruments were placed 1.5 m above the scratching area. Temperature and relative humidity (RH) were measured at the same height in the mid-position. During the air sampling, 30 cloacal swabs were taken from randomly selected hens during each farm visit to estimate the within flock prevalence of C. jejuni.

Sampling of airborne bacteria and dust. The impingement with all-glass impingers (AGI-30; Ace Glass Inc., Vineland, NJ, USA) and a wet cyclone technology (Coriolis®µ Air Sampler, Bertin Technologies, Montigny le Bretonneux, France) were used to sample airborne bacteria. On each sampling day, 3 impingers were operated simultaneously at the sampling locations for 30 min. Micro-organisms were collected in 30 ml phosphate buffered saline (PBS). The air flow (12.5 l min⁻¹) through the impingers was controlled before and after the end of the sampling time with a flow meter 044-14G from Analyt-MTC (Mülheim, Germany). In order to compare the impingement with the Coriolis®µ Air Sampler, one air sample was taken with the cyclone at each sampling position in parallel to the impingement. The cyclone was adjusted to sample 0.9 m³ within 3 min. Airborne bacteria were collected in Coriolis®µ cones filled with 15 ml PBS.

Dust sampling was started at the same time of using the impingement. Therefore, one SKC pump with an IOM sampler (SKC Inc. Eighty-Four PA, USA) was located beside each AGI-30 impinger. The airflow of the pumps was adjusted to 2.5 l min⁻¹. Dust was sampled for 120 min. on polycarbonate membrane filters with 0.2 µm pores (Omnilab, Gehrden, Germany). Samples were transported to the laboratory under cooled conditions together with air samples. Isolation and identification of C. jejuni from dust samples were carried out following the method recently described by Ahmed et al. [20].

Temperature and humidity measurements. Temperature and humidity were measured during the air samplings with a thermo-hygrometer (Rotronic Date logger Hydrolog-D HygroClipS Temperatur/RH (Rotronic GmbH, Ettlingen, Germany). Values were recorded 15 min after the impingement was started.

Prevalence of C. jejuni within the flock. In order to estimate the prevalence of C. jejuni within the laying hen flock, 30 randomly selected birds were captured and investigated by cloacal swabs (EUROTUBO®, DELTALAB, Spain) during each farm visit. One swab was obtained from each bird and streaked directly onto modified Charcoal Cefoperazone Desoxycholate Agar (mCCDA, Oxoid, Germany) and Brilliance CampyCount agar (Oxoid, Germany). Thereafter, each swab was placed in a tube with 9 ml Bolton broth (Oxoid, Germany). Samples were transported to the laboratory under cooled conditions together with air samples. Isolation and identification of C. jejuni from swab samples was carried out following the method recently described by Ahmed et al. [20]. The prevalence of C. jejuni within the laying hen flock was estimated by the number of C. jejuni positive hens (npos) in relation to the total number of tested hens (n = 30), as given by equation 2.

\[
\text{Prevalence} \% = \frac{n_{\text{pos}}}{n} \times 100
\]

Statistical analysis. Statistical differences among the numbers of bacteria detected with the impingement and the...
Coriolis\textregisteredµ Air Sampler were assessed by using the Wilcoxon sum-rank test. The correlation (Pearson’s correlation) among the bacteria concentrations measured with different sampling techniques was calculated with the SAS [21] software version 9.3 [SAS Institute Inc., Cary, NC, USA].

RESULTS

The concentrations of airborne mesophilic bacteria from impinger samples ranged from \(8 \times 10^4 - 2 \times 10^6\) CFU/m\(^3\) and the concentrations from the Coriolis\textregisteredµ Air Sampler varied between \(2 \times 10^5 - 4 \times 10^6\) CFU/m\(^3\). No bacteria growth was observed in any of the transport controls. In 17 out of 18 air samples the Coriolis\textregisteredµ Air Sampler showed higher bacteria concentrations than the AGI-30 samplers (Fig. 1).

The differences between the concentrations of both air samplers are highly significant (\(p<0.001\)). The tendencies of the concentrations of the different sampling methods are very similar and show a high correlation (\(r_{\text{Pearson}} = 0.755\)). There was no obvious coherence between climatic factors and the average bacteria concentrations of both sampling methods (Tab. 1). In this context, it is remarkable that the maximum variations of temperatures (\(\pm 3.6°C\)) and humidity (\(\pm 17\%\)) were low among the different sampling days.

Table 1. Amounts of mesophilic bacteria \(\times 10^4\) CFU/m\(^3\) (Mean ± SD) at different ages of laying hens and under different climatic conditions in the laying hen house

<table>
<thead>
<tr>
<th>Sampling No. (week of laying period)</th>
<th>Air sampling methods</th>
<th>Temperature °C</th>
<th>RH %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impinger</td>
<td>Coriolis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 (14)</td>
<td>145±71</td>
<td>158±38</td>
<td>16.8</td>
</tr>
<tr>
<td>2 (15)</td>
<td>32±22</td>
<td>52±22</td>
<td>13.2</td>
</tr>
<tr>
<td>3 (16)</td>
<td>37±18</td>
<td>60±41</td>
<td>15.8</td>
</tr>
<tr>
<td>4 (17)</td>
<td>25±24</td>
<td>50±28</td>
<td>13.9</td>
</tr>
<tr>
<td>5 (18)</td>
<td>34±6</td>
<td>58±28</td>
<td>13.2</td>
</tr>
<tr>
<td>6 (19)</td>
<td>87±32</td>
<td>233±130</td>
<td>14.6</td>
</tr>
</tbody>
</table>

The estimated prevalence of \(C.\textit{jejuni}\) within a laying hen flock during the measurements ranged between 70-93\% (Fig. 2). It seems that the tendency of the prevalence increased from the 14th week (sampling day 1) to the 19th week (sampling day 6) of the laying period (Fig. 2).

DISCUSSION

Measurements with both applied air-sampling techniques showed a strong variation of bacteria concentrations (> one log step) between the 14th and 19th week of the laying period. Such different values of airborne bacteria were also detected with AGI-30 impingers in aviaries in a seasonal course by Springorum and Hartung [22]. The authors suggested that air exchange rates, animal activity and waste management are important factors having an impact on the concentrations of airborne microorganisms in a laying hen house. In the presented study it was also assumed that these factors affected the bacteria concentrations during the investigations. Interestingly, a high correlation was observed between the bacteria concentrations detected with different sampling methods. This indicates that probably the same factors (animal activity, ventilation rate, etc.) within the laying hen house influenced the results. However, the concentrations measured with the Coriolis\textregisteredµ Air Sampler were significantly higher than the concentrations detected with AGI-30 impingers. One reason for this could be the difference in particle sizes sampled from the air – the Coriolis\textregisteredµ Air Sampler samples larger particles compared to the AGI-30 impinger and these larger particles may carry more bacteria than the smaller

The differences between the concentrations of both air samplers are highly significant (\(p<0.001\)). The tendencies of the concentrations of the different sampling methods are very similar and show a high correlation (\(r_{\text{Pearson}} = 0.755\)). There was no obvious coherence between climatic factors and the average bacteria concentrations of both sampling methods (Tab. 1). In this context, it is remarkable that the maximum variations of temperatures (\(\pm 3.6°C\)) and humidity (\(\pm 17\%\)) were low among the different sampling days.

Table 2. Detection of \(C.\textit{jejuni}\) DNA isolated from airborne dust

<table>
<thead>
<tr>
<th>Sampling No. Location</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>6</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

\(+ =\) positive dust sample; \(- =\) negative dust sample

\(C.\textit{jejuni}\) could not be detected in any of the air samples, neither by direct plating nor by the enrichment methods. On the other hand, \(C.\textit{jejuni}\) specific DNA was detected in airborne dust by \(\text{mapA}\) PCR on each sampling day (Tab. 2). Overall, \(C.\textit{jejuni}\) specific DNA was detected in 15 (83\%) out of 18 airborne dust samples. The control samples showed no positive PCR results.
particles [23, 24] which could lead to a higher bacteria concentration in the sampling buffer of the Coriolis’sµ cones. Another reason could be the sampling stress induced by the impingement and a minor loss through reaerosolization of particles within the cyclone [25, 26]. The reasons for these differences need to be clarified in future under laboratory conditions. However, due to the higher sampling efficiency of culturable bacteria and its lower detection limit compared to the AGI-30 impinger, the Coriolis’sµ Air Sampler seems to be a suitable device for measuring bacteria concentrations in the air of poultry houses. Verification of this statement is recommended by conducting further experiments in different housing systems. Also, the potential impact of climatic conditions (temperature and relative humidity), which showed no obvious influence during the presented study, should be examined in more detail.

The sampling of airborne culturable C. jejuni was not successful, although a high prevalence of this bacterium was observed on all sampling days. Hens are known to shed C. jejuni at high rates [27] and that about 2-8% of airborne particles in poultry houses originate from faeces [28, 29, 30]. Therefore, airborne C. jejuni could be expected in the air of the laying hen house. Nevertheless, only C. jejuni specific DNA was detected in 83% of airborne dust samples. Washing and centrifugation of dust samples can lead to isolation of particular bound DNA (including bacteria cells), and the use of a stool kit for DNA extraction enables the detection of C. jejuni specific DNA in the presence of faecal particles [31, 32]. It was assumed that C. jejuni DNA detection in the air of the laying hen house refers to the presence of C. jejuni cells. Olsen et al. [33] arrived at the same conclusion when they detected C. jejuni DNA in the air of broiler houses. This means that cultivable airborne C. jejuni does not occur or occurs in negligible amounts in flocks with a high prevalence. The theoretical detection limit of Coriolis’sµ Air Sampler was 15 cfu/0.9 m³ for the enrichment method, and 1 cfu/0.9 m³ after filtration of the rest of the sampling solution. Assuming that only cultivable C. jejuni are potentially infective, it seems that there is only a limited risk for farmers, veterinarians or workers in poultry houses to be infected by inhaling or swallowing C. jejuni. This is also supported by the findings of Berndtson et al. [34] and Chinivasagam et al. [35]. On the other hand, it is not known if sampling of airborne C. jejuni with the Coriolis’sµ Air Sampler or with AGI-30 impingers may influence their culturability. Therefore, the survival of airborne C. jejuni during sampling with these samplers has to be investigated in suitable laboratories in future to exclude significant negative sampling effects. Furthermore, more samplings in high prevalent poultry flocks with higher sampling volumes or additives in sampling solutions that protect sensitive bacteria should be carried out to gain quantitative results for airborne culturable C. jejuni. This may confirm the assumptions about a low infection risk for persons by airborne C. jejuni in poultry houses, and could also help assess the risk of airborne transmission between poultry/animal houses.

CONCLUSIONS

The Coriolis’sµ promises to be a useful technique for efficiently quantifying aerobic mesophilic bacteria in poultry houses. More investigations in different housing systems are necessary to confirm this hypothesis. The failure to detect culturable C. jejuni in a high prevalent laying hen flocks with an efficient air sampler indicates a low risk for persons to become infected by the airborne route. However, the role of non-culturable C. jejuni, which may occur in the animal house air, requires future investigation.

REFERENCES