RESEARCH PAPER
A model to account for variations in holm-oak (Quercus ilex subsp. ballota) acorn production in southern Spain
 
More details
Hide details
1
Department of Botany, Ecology and Plant Physiology, University of Córdoba, Spain
 
Ann Agric Environ Med. 2012;19(3):403–408
KEYWORDS
ABSTRACT
One of the characteristics of holm-oak acorn production is its high variability among individuals and years. To examine the main causes of this fact, a study was conducted from 1998-2010 in a natural area of holm-oak in southern Spain, where floral phenology, fruit production, fruit size, airborne pollen emission and meteorology factors were analyzed with the ultimate aim of developing a model for forecasting holm-oak yield. Pollen emission during flowering season was the main factor determining the final acorn harvest, but also some meteorological variables played an important role in explaining acorn crop variations, especially humidity and temperature during the months of April and September. The reliability of the proposed model was externally validated using data not included in its construction; validation yielded acceptable results, with a minimum error of estimation. Our results appear to be very useful for planning cropping and pig feeding strategies. Further research could extend the use of airborne pollen counts in forest studies relating to anemophilous species, in order to optimize agricultural policies.
 
REFERENCES (43)
1.
Kelly D, Sork VL. Mast Seeding in Perennial Plants: Why, How, Where? Annual Review of Ecology and Systematics 2002; 33: 427-447.
 
2.
Carmen WJ, Koening WD, Mumme RL: Acorn production of five species of oaks over a seven-year period at the Hastings Reservation, Carmel Valley, California. In: Proceedings of the Symposium on Multiple-use Management of California’s, L.A. 1987.
 
3.
Christisen DM, Kearby WH, Steven MA. Mast measurement and production in Missouri with special reference to acorns. Terrestrial series 1984; 13: 1-34.
 
4.
Koenig WD, Knops JMH. Patterns of Annual Seed Production by Northern Hemisphere Trees: A Global Perspective. The American Naturalist 2000; 155 (1): 59-69.
 
5.
Sork VL, Bramble J, Sexton O. Ecology of mast-fruiting in three species of North American deciduous oaks. Ecology 1993; 74 (2): 528-541.
 
6.
Gea-Izquierdo G, Cañellas I, Montero G. Acorn production in Spanish holm oak woodlands. Invest Agrar Sist Recur For. 2006; 15 (3): 339-354.
 
7.
Joffre J, Vacher J, de los Llanos C, Long G. The dehesa: an agrosilvopastoral system of the Mediterranean region with special reference to the Sierra Morena area of Spain. Agroforest Syst. 1988; 6: 71-96.
 
8.
Scarascia-Mugnozza G, Oswald, H, Piussi P, Radoglou K. Forests of the Mediterranean region: gaps in knowledge and research needs. Forest Ecol Manag. 2000; 132: 97-109.
 
9.
MAPYA. Anuario de Estadística Agroalimentaria. MAPYA. Madrid 2004.
 
10.
Cecich RA, Sullivan NH. Influence of weather at time of pollination on acorn production of Quercus alba and Quercus velutina. Can J For Res. 1999; 29 (12): 1817-1823.
 
11.
Ducousso A, Michaud H., Lumaret R. Reproduction and gene flow in the genus Quercus L. Ann For Sciences. 1993; 50: 91-106.
 
12.
Koenig WD, Mumme RL, Carmen WJ, Stanback MT. Acorn Production by Oaks in Central Coastal California: Variation within and among years. Ecology 1994; 75 (1): 99-109.
 
13.
Vázquez F, Espárrago F, Lopez JA, Jaraquemada, F. Evergreen oak fruit production in Extremadura (1989). In: Workshop Quercus ilex. L. Ecosystems: Function, Dynamics and Management. Montpellier-Barcelona, Spain-France 1990.
 
14.
Vazquez F. Semillas de Quercus: Biología, Ecología y manejo. Consejería de Agricultura y Comercio. Junta de Extremadura. Badajóz, Spain 1998.
 
15.
Sork VL, Davis FW, Smouse PE, Apsit VJ, Dyer RJ, Fernández JF, Kuhn. Pollen movement in declining populations of California Valley oak, Quercus lobata: where have all the fathers gone? Molecular Ecology 2002; 11: 1657-1668.
 
16.
García-Mozo H, Gómez-Casero MT, Dominguez E, Galán C. Influence of pollen emission and weather-related factors on variations in holm-oak (Quercus ilex subsp. ballota) acorn production. Environ Exp Bot. 2007; 61: 35-40.
 
17.
Pinilla R, Tamajón R, Muñoz J. Vegetación actual. In: Reconocimiento Biofísico de Espacios Naturales Protegidos. Parque Natural Sierra de Hornachuelos. Consejería de Medio Ambiente Junta de Andalucía, Sevilla, Spain 1995.
 
18.
Hidalgo-Fernández, P, Heras, MA. The effect of climate fluctuations on tree rings of Pinus pinaster Ait. and Quercus ilex subsp ballota (Desf.) Samp. In: Quaternary Climatic Changes and Environmental Crises in the Mediterranean Region, 2003; pp 7-12.
 
19.
Hirst J. An automatic volumetric spore-trap. Ann Appl Biol. 1952; 36: 257–265.
 
20.
Galán C, Cariñanos P, Alcázar P, Dominguez E. Management and Quality Manual. Spanish Aerobiology Network (REA). Servicio Publicaciones Universidad de Córdoba, Córdoba, Spain, 2007.
 
21.
Gómez-Casero MT, Hidalgo P, Garcia-Mozo H, Domínguez E, Galán Pollen biology in four mediterranean Quercus species. Grana 2004; 43: 1-9.
 
22.
Abrahamson WG, Layne JN. Long-term patterns of acorn production for five oak species in xeric Florida uplands. Ecology 2003; 84: 2476-2492.
 
23.
Esparrago F, Vázquez F, Buzarco A, Pérez MC. Producción de bellota en Quercus rotundifolia Lam.: variabilidad anual e importancia económica. Actas I Congreso Forestal Español 1992; 3: 503-510 (in Spanish).
 
24.
Galán C, Vázquez L, García-Mozo H, Domínguez E. Forecasting olive (Olea europaea L.) crop yield based on pollen emission. Field Crops Res. 2004; 86: 43-51.
 
25.
Galán C, García-Mozo H, Vázquez L, Ruiz L, Díaz De La Guardia C, Domínguez E. Modelling olive (Olea europaea L.) crop yield in Andalusia Region, Spain. Agron J. 2008; 100 (1): 98-104.
 
26.
García-Mozo H, Perez-Badía R, Galán C. Aerobiological and meteorological factors influence on olive (Olea europaea L.) crop yield in Castilla-La Mancha (Central Spain). Aerobiologia 2007; 24 (1): 13-18.
 
27.
Baugnent E. Contribution à l’étude des previsions de récolte viticole à partir de l’analysis du contenu pollinique de l’atmosphere. Mémorie de fin d’etudes ENITA 1991; pp. 54 (in Spanish).
 
28.
Lletjos R, Bartroli R, Esteban A, Riera S, Coll CR. Forecasting hazelnut (Corylus avellana L.) crop production based on monitoring airborne pollen concentration. In: IV International Symposium on fruit, nut and vegetable production engineering, Valencia-Zaragoza, España 1993.
 
29.
Litschauer R. Untersuchungen zum Reproduktionspotential im Bergwald. FBVA 2003;130: 79-85.
 
30.
Norton, DA, Kelly D. Mast seeding over 33 years by Cadrydium cupressinum Lamb. (Podocarpaceae) in New Zealand: the importance of economies of scale. Funct Ecol. 1988; 2: 399-408.
 
31.
Nilsson SG, Wästljung U. Seed Predation and Cross-Pollination in Mast-Seeding Beech (Fagus sylvatica) Patches. Ecology 1987; 68(2): 260-265.
 
32.
Alejano R, Tapias R, Fernández M, Torres E, Alaejos J, Domingo J. Influence of pruning and the climatic conditions on acorn production in holm oak (Quercus ilex L.) dehesas in SW Spain. Ann For Sci. 2008; 65: 209-219.
 
33.
Askeyev OV, Tischin D, Sparks TH, Askeyev IV. The effect of climate on the phenology, acorn crop and radial increment of pedunculated oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. Int J Biometeorol. 2005; 49(4): 262-266.
 
34.
Goodrum PD, Reid VH, Boyd CE. Acorn Yields, Characteristics, and Management Criteria of Oaks for Wildlife. J Wildlife Management 1971; 35(3): 520-532.
 
35.
Montserrat-Martí G, Camarero J, Palacio S, Pérez-Rontomé C, Milla R. Albuixech J, Maestro M. Summer-drought constrains the phenology and growth of two coexisting Mediterranean oaks with contrasting leaf habit: implications for their persistence and reproduction. Trees Structure and Function 2009; 23(4): 787-799.
 
36.
Misson L, Degueldre D, Collin C, Rodriguez R, Rocheteau A, Ourcirval JM, Rambal S . Phenological responses to extreme droughts in a Mediterranean forest. Global Change Biol. 2011; 17: 1036-1048.
 
37.
Cañellas I, Roig S, Poblaciones MJ, Gea-Izquierdo G, Olea L. An approach to acorn production in Iberian dehesas. Agroforest Syst. 2007; 70: 3-9.
 
38.
Gutschick VP, Bassirad H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytologist. 2003; 160: 21-42.
 
39.
Rodríguez-Estévez V, García-Martínez C, Mata-Moreno C, Perea-Muñoz JM, Gómez-Castro AG. Basic of methods for acorn mast prediction in the dehesa. Arch Zootec. 2008; 57: 29-38.
 
40.
García-Mozo H, Galán C, Vazquez L. The reliability of geostatistic interpolation in olive field phenology. Aerobiologia 2005; 22: 97-108.
 
41.
Gómez-Casero MT, Galán C, Domínguez-Vilches E. Flowering phenology of Mediterranean Quercus species in different locations (Córdoba, SW Iberian Peninsula). Acta Botanica Malacitana 2007; 32: 127-146.
 
42.
Jato V, Rodríguez-Rajo F, Méndez J, Aira MJ. Phenological behaviour of Quercus in Ourense (NW Spain) and its relationship with the atmospheric pollen season. Int J Biometeorol. 2002; 46 (4): 176-184.
 
43.
García-Mozo H, Chuine I, Aira MJ, Belmonte J, Bermejo D, Díaz de la Guardia C, Elvira B, Gutiérrez M, Rodríguez-Rajo J, Ruiz L, Trigo MM, Tormo R, Valencia R, Galán C. Regional phenological models for forecasting the start and peak of the Quercus pollen season in Spain. Agric For Meteorol. 2008; 148: 372-380.
 
eISSN:1898-2263
ISSN:1232-1966